ロジウムメッキとは何ですか?ジュエリーにどのようなメリットがありますか?

ロジウムメッキは、ジュエリーに硬く銀白色の変色防止層を加えます。腐食を防ぎ、輝きを保ち、摩耗にも強いのが特徴です。このガイドでは、メッキのプロセス、解決策、そしてシルバーやプラチナ製品に耐久性と光沢を与える方法について解説します。

ロジウムメッキとは何ですか?ジュエリーにどのようなメリットがありますか?

Rhodium Plating Guide for Jewelry: Anti-Tarnish, Hardness, Silver-White Finish

はじめに

Rhodium plating is an electroplating process that deposits a thin layer of rhodium, a precious metal from the platinum family, onto jewelry. But what makes it so special? This hard, silver-white coating provides exceptional tarnish and corrosion resistance, preventing jewelry from darkening over time. It also significantly increases surface hardness, making pieces more scratch-resistant and durable. Commonly used as a protective final layer for silver and platinum, it enhances brightness and gives a high-gloss, reflective mirror finish. This article delves into the process, from sulfate-based plating solutions to chemical deposition, explaining how this technique creates long-lasting, beautiful jewelry.

ロジウムメッキとは何か、そしてそれがジュエリーにどのようなメリットをもたらすのか

目次

セクション I 概要

Rhodium has an atomic number of 45 in the periodic table, with the element symbol Rh. It was discovered by W. H. Wollaston in 1803. Its name comes from the Greek word “Rodeos,” meaning rose-colored because rhodium salt solutions are rose-colored.

Rhodium was the first white metal to be industrially applied in electroplating factories. Generally, rhodium is resistant to corrosion by acids and bases (including aqua regia), but it can react with hot, concentrated sulfuric acid, sodium hypochlorite, and others under 300℃. The rhodium plating film has a high mirror reflectivity, exceptionally high hardness reaching Hv 800–1000, excellent corrosion resistance, and low electrical resistance. Unlike Ag, it does not change over time, so it can be used as a contact material. It is also widely used in electronics, electrical, and optical components industries. Rhodium can also be used as an anti-wear coating for advanced scientific instruments. Additionally, rhodium is commonly used to manufacture hydrogenation catalysts, and rhodium-platinum alloys make thermocouples. Rhodium plating is a color and protective layer for silver-white precious metal jewelry such as silver and platinum. Some main parameters of rhodium are shown in Table 5-1.

Table 5-1 Some Main Parameters of Rhodium
Characteristic parameters Characteristic value

Element name, element symbol, atomic number

分類

Group, Period

Density, hardness

カラー

相対原子質量

原子半径

Covalent bond radius

Chemical valency

Crystalline structure

melting point

boiling point

気化熱

Heat of dissolution

比熱容量

Conductivity

Thermal conductivity

Rhodium、Rh、45

Transition metal

9(Ⅷ), 5

12450kg/m3、6

Silver White

102.90550

135pm

135pm

2、3、4

面心立方

2237K (1964℃)

3968K (3695℃)

493kJ/mol

21. 5 kJ/mol

0. 242J/(kg ・ K)

21. 1 X 106m •Ω

150W/(m • K)

Section II Rhodium Plating and Its Alloys

1. Rhodium Plating

Rhodium is the most widely used platinum group metal in electroplating. Due to rhodium’s excellent corrosion resistance, its plating is harder and more wear-resistant than other precious metals, and its white tone is widely used in the jewelry industry. It is especially indispensable as an anti-tarnish protective coating for silver ( usually plated with 0.05μm flash rhodium ). Moreover, its high mirror reflectivity makes it commonly used as the final flash plating on mirrors. Black rhodium plating is typically used on eyeglass frames and watch cases. It can be used as an electrode in seawater electrolysis and household water treatment electrodes. Additionally, in the electronics industry, it is applied on switch contacts.

The application of rhodium in electroplating began in the 1930s, primarily for decorative purposes. In 1934, Shield applied for the first patent for rhodium electroplating.
The plating solutions for rhodium electroplating include:

① Rhodium sulfate – sulfuric acid plating solution series;

② Rhodium phosphate-sulfuric acid plating solution series;

③ Also, phosphate-based fluoroboric acid plating solution, sulfonic acid plating solution, etc., have not been commercialized.

Rhodium has mainly been studied for its application on spring contacts.

In sulfuric acid plating solutions, there are thin plating solutions for decorative purposes (focusing on reflectivity and gloss), thick plating solutions (focusing on film thickness and contact resistance), and high-speed plating solutions.

1.1 Thin Plating Solution
Usually, when the rhodium plating layer is used as decorative plating, the key point is whiteness. At this time, it is better to use rhodium phosphate-sulfate components. Table 5-2 shows components and their operating conditions of some representative rhodium plating solutions.
Table 5-2 Representative Components and Operating Conditions of Rhodium Plating Solutions
Sulfate-Sulfuric Acid Series Phosphate-Sulfuric Acid Series Phosphate-Phosphoric acid series

Rhodium (as rhodium sulfate) 1. 5〜2. 0g/L

Sulfuric acid (95%~96%) 25〜50mL/L

Solution Temperature 40〜50℃

Current density 1〜10A/dm2

Voltage 3〜6V

Anode Pt

Rhodium (as rhodium phosphate) 2. 0g/L

Sulfuric acid (95%~96%) 25〜50mL/L

Solution Temperature 40〜50℃

Current density 1〜10A/dm2

Voltage 3〜6V

Anode Pt

Rhodium (as rhodium phosphate) 2. 0g/L

Phosphoric acid (85%) 40〜80mL/L

Solution Temperature 40〜50℃

Current density 1〜15A/dm2

Voltage 4〜8V

Anode Pt

   

(1) Corrosion resistance performance: 

Rhodium is an extremely stable metal, but the plating film is somewhat inferior. Generally, other metals are first plated on the substrate when plating rhodium and rhodium is plated last. In this case, the corrosion resistance of the underlying plated metal becomes a very important factor. There are two reasons: first, because rhodium is a precious metal, there is a potential difference between it and non-precious metals; second because it is expensive, it cannot be plated too thickly. When plating rhodium on an underlying Ni layer, electrochemical corrosion can easily occur, so a high-potential plating layer can be introduced between the two, such as gold plating, which is better. However, since gold plating increases costs, later 2μmPd or Pd-Ni alloys were introduced to improve corrosion resistance.



(2) The effect of impurities on plating performance: 

Rhodium plating solution is strongly acidic, and during printed circuit board plating, it may cause the dissolution of the mask. When metal impurities are present, the rhodium plating layer will appear blackened, reducing the commercial value of the rhodium plating layer. When organic impurities are present, the internal stress of the rhodium plating layer increases, which, in turn, reduces the adhesion of the plating layer. W. Safranek studied the case of increased plating stress when organic impurities are present in the plating solution; the results are shown in Table 5-3.

Table 5-3 Effects of Organics on the Stress of Rhodium Plating Layers
Plating solution temperature /℃ Cleaning fluid/ ( kgf/ mm2) Masking agent (A) (low sulfur content)/(kgf/mm2 Masking agent /(kgf/mm2)

30

40

50

60

70

70

87

80

69

59

72

89

82

71

61

91

114

92

91

100

Note: Plating solution composition and conditions:

Rhodium metal 8g/L

H2SO4 30g/L

Current Density 0.5A/dm2

Plating time 30min

Amount of plating solution 200mL

1.2 Thick Plating Solution
The rhodium plating solution is generally used for the so-called flash plating of very thin layers. However, thick rhodium plating has also begun to appear in industrial fields. Due to the high stress of thick rhodium plating layers, cracks are prone to occur, and sometimes, plating peeling happens along the cracks, reducing the reliability of thick rhodium plating layers. Stress relievers and brighteners must be added to obtain a 2~10μm rhodium plating layer. Muller found through research that thallium salts are quite effective in reducing stress, and Ye.Ze then found that sulfonates are better as brighteners.

   

(1) The types of sulfonates and the relationship between their concentration in solution and current efficiency. 

Aotani et al. studied benzaldehyde-2,4-disulfonate sodium or 1,5-naphthalene disulfonate disodium and amino sulfonic acid in a rhodium-plating solution. When the rhodium concentration was 5g/L, and the current density was 1.5A/dm2, after plating for 60 min, the relationship between sulfonate concentration and current density was examined. The results are shown in Figures 5-1 to 5-3. The results indicate that as the sulfonate concentration increases, the current efficiency almost linearly decreases, and the plating film quality also deteriorates accordingly.

Figure 5-1 Effect of adding sodium 2,4-disulfonate benzaldehyde on current efficiency

Figure 5-1 Effect of adding sodium 2,4-disulfonate benzaldehyde on current efficiency

Figure 5-2 Effect of adding disodium 1,5-naphthalene disulfonate on current efficiency

Figure 5-2 Effect of adding disodium 1,5-naphthalene disulfonate on current efficiency

Figure 5-3 Effect of adding amino sulfonic acid on current efficiency

Figure 5-3 Effect of adding amino sulfonic acid on current efficiency

   

(2) The relationship between thallium nitrate, magnesium sulfate, and aluminum sulfate as stress relief agents and current efficiency. 

Additives include 1,5-naphthalene disulfonate disodium and amino sulfonic acid. The relationship between their additive concentration and current efficiency is shown in Figure 5-4. Meanwhile, the changes in current efficiency when various stress relief agents are combined as additives are shown in Figure 5-5.

Figure 5-4 Effect of additives on current efficiency 1-sulfuric acid 90g/L, sodium benzaldehyde-2,4-disulfonic acid 0.5g/L, wetting agent for nickel plating; 2-sulfuric acid 20g/L, thallium nitrate 0.05g/L, sulfamic acid; 3-sulfuric acid 35g/L, sulfamic acid 20g/L, magnesium sulfate; 4-sulfuric acid 50g/L, sulfamic acid 5g/L, aluminum sulfate
Figure 5-4 Effect of additives on current efficiency

1-sulfuric acid 90g/L, sodium benzaldehyde-2,4-disulfonic acid 0.5g/L, wetting agent for nickel plating;

2-sulfuric acid 20g/L, thallium nitrate 0.05g/L, sulfamic acid;

3-sulfuric acid 35g/L, sulfamic acid 20g/L, magnesium sulfate;

4-sulfuric acid 50g/L, sulfamic acid 5g/L, aluminum sulfate

Figure 5-5 The effect of adding thallium nitrate, 1,5-naphthalene disulfonate disodium, benzaldehyde, and amino sulfonic acid on current efficiency

Figure 5-5 The effect of adding thallium nitrate, 1,5-naphthalene disulfonate disodium, benzaldehyde, and amino sulfonic acid on current efficiency

It can be seen that the combined use of sulfonic acid, thallium nitrate, benzaldehyde-2,4-disulfonate sodium or 1,5-naphthalene disulfonate disodium, 2,4-disulfonate sodium, and 1,5-naphthalene disulfonate sodium can produce a semi-bright or higher non-peeling plating layer. The roles of each component are as follows:

① Rhodium: 5g/L is used as the standard, and the current efficiency increases for every 1g/L increase.

② Sulfuric acid: When the concentration of sulfuric acid increases, the brightness slightly increases, but the current efficiency decreases.

③ Sulfonic acid: As a brightening leveling agent, Sulfonic acid can increase leveling (brightness increases, roughness decreases).

④ Thallium nitrate: Besides serving as a stress-relief agent, Thallium nitrate also helps increase current efficiency, can prevent the decline of current efficiency when rhodium concentration decreases, and reduces pitting.

⑤ Benzaldehyde-2,4-disulfonate sodium or 1,5-naphthalene disulfonate sodium: As brightening leveling agents, can increase the brightness of the plating layer, reduce plating nodules while causing a decrease in current efficiency.

Based on the above, it can be assumed that the following composition and operating conditions can be used to obtain a coating with a thickness of 30μm or more.

Rhodium ion concentration

Sulfuric acid concentration

Thallium nitrate

Sulfonic acid

Sodium benzaldehyde-2,4-disulfonate or disodium 1,5-naphthalenesulfonate

Plating solution temperature

Current efficiency

5g/L

50g/L

0.05g/L

40g/L

0.4g/L

50℃

Above 60%

The coating properties obtained from this solution are:

Inherent Resistance

Durability

Corrosion resistance

Heat Resistance

硬度

Bending test

表面状態

23×10-6Ω·cm

グッド

Few penetration spots to Ni substrate.

No flaking at 450℃, but cracks are present.

Average Hv 900

The base is thin sample when peeling off less, poor spreading

Few plating tumors, semi-bright and bright, but there are pits present

The thick rhodium plating solution has the following British patent (Brit PAT. 808958).

Rhodium (as rhodium sulfate)

硫酸

Selenic acid(HSeO)

Plating solution temperature

Current density

10g/L

10〜200mL/L

0. 1〜1. 0g/L

50 〜75℃

1.2A/dm2

The typical rhodium plating process flow is shown in Figure 5-6.
Figure 5-6 Rhodium plating process
Figure 5-6 Rhodium plating process

The rhodium salts can be prepared using the alloy, chlorination, or fusion methods.

In addition, organic carboxylic acids are also considered stress relievers in rhodium plating.

1.3 Improvement of the Rhodium Plating Process

In rhodium plating layers, the inherent tensile stress is a major defect. As mentioned earlier, adding a stress-relieving agent can reduce the stress, thereby increasing the thickness of crack-free rhodium plating. However, adding stress-relieving agents usually causes a decrease in the hardness and wear resistance of the plating.

Armstrong Michael obtained crack-free rhodium plating by adding halogen compounds from chloride ions to the plating solution while maintaining the hardness and wear resistance unaffected. The basic components are as follows:

Rhodium salt (in rhodium)    5〜15g/L     Provides metal ions

H2SO4     30〜90mL/L     Increases electrical conductivity

HCI         (10~300)×10-6         Stress Relief Agent

Current density        1~8A/ft(0. 10. 8A/dm2 )

HCl can reduce the stress of the plating layer without reducing hardness and wear resistance. Generally speaking, the higher the chloride ion concentration, the thicker the crack-free plating layer can be.

This invention is also suitable for pattern plating on printed circuit boards.

There are also other reports using sulfonic acid groups as additives. The structural formula of the additive is R—SO3—H. Where R is a straight-chain, branched, or cyclic group with less than 20 carbon atoms. The additive effect increases smoothness and whiteness, thereby increasing crack-free plating thickness. The plating solution composition is as follows:

Rhodium (added as sulfate or phosphate)

Sulfuric or phosphoric acid

Pyridine-3-sulfonic acid

Surfactant

Additives (added as R-SO3-H structure)

0. 1〜20g/L

100〜200g/L

0〜5g/L

0. 01〜2g/L

0. 1〜10g/L

Through experimental verification, it was confirmed that although adding octyl sulfonate (2g/L) slightly reduces current efficiency, it can effectively increase the whiteness of the plated parts. By adding octyl sulfonate, the plating thickness can reach about 0.3~0.7μm.

Joseph and others improved the manufacturing process of rhodium sulfate to obtain rhodium sulfate that is more suitable for rhodium plating (see Figure 5-7).

Figure 5-7 Rhodium sulfate manufacturing process
Figure 5-7 Rhodium sulfate manufacturing process
The rhodium sulfate obtained by this method differs from that obtained by the traditional method. In rhodium sulfate obtained by the traditional method, there exists rhodium-rhodium bonding. In contrast, the rhodium sulfate obtained by this method does not have rhodium-rhodium bonding but is bonded through —S — (see Figure 5-8). The key is to obtain the required structural formula by controlling the neutralization reaction.
Figure 5-8 Structural formula of rhodium sulfate
Figure 5-8 Structural formula of rhodium sulfate

コピーライト @ Sobling.Jewelry - ジュエリー カスタムジュエリーメーカー、OEMおよびODMジュエリー工場

In the traditional preparation method, the neutralization reaction is carried out at room temperature. Due to the heat of the reaction, the actual reaction temperature is much higher than room temperature. Joseph and others controlled the reaction temperature below 25℃ by cooling, which can be achieved by water cooling. The rhodium sulfate obtained was used for plating tests, resulting in a plating layer with low internal stress, brightness, and a plating thickness of up to 1μm.

In addition, Japan’s phase field proposed a method for rapid rhodium plating. The method used is to introduce a jet flow on the equipment (as shown in Figure 5-9), using existing rhodium plating solution, to achieve rapid plating while ensuring the existing advantages.

Figure 5-9 Schematic diagram of rapid rhodium plating equipment 1—plated part (cathode); 2—anode; 3—jet system (inner tank); 4—outer tank; 5—nozzle; 6—conductive rod

Figure 5-9 Schematic diagram of rapid rhodium plating equipment

1—plated part (cathode); 2—anode; 3—jet system (inner tank); 4—outer tank; 5—nozzle; 6—conductive rod

The representative plating solution composition and process conditions are:

Rhodium ion concentration

Sulfuric acid concentration

温度

Current density

Jet speed

8〜12g/L

70〜90g/L

50〜70℃

8A/dm2

0. 3〜1. 0m/s

Through experiments, it was found that as the current density increases, the plating speed improves; the higher the temperature, the greater the plating speed; at the same time, increasing the jet velocity can also enhance the plating speed. The plating results with varying jet velocities are shown in Table 5-4.

Using this method, a coating with a thickness above 5μm can be obtained, which is glossy, hard in texture, and has low internal stress.

Table 5-4 Effect of Jet Velocity on Plating Speed
Plating solution composition Plating conditions Plating speed Plating condition
Rhodium ion concentration 硫酸 温度 Current density Jet speed 外観 ひび割れ

10g/L

10g/L

10g/L

10g/L

10g/L

10g/L

80g/L

80g/L

80g/L

80g/L

80g/L

80g/L

60℃

60℃

60℃

60℃

60℃

60℃

30A/dm2

30A/dm2

30A/dm2

30A/dm2

30A/dm2

30A/dm2

0. 0m/s

0. 2m/s

0. 4m/s

0. 6m/s

0. 8m/s

1. 0m/ s

1. 70μm/min

1. 73μm/min

1. 84μm/min

1. 90μm/min

2. 10μm/min

2. 22μm/min

光沢

光沢

光沢

光沢

光沢

光沢

いいえ

いいえ

いいえ

いいえ

いいえ

いいえ

1.4 Electroplating Black Rhodium
The black rhodium plating layer has a near-amorphous crystalline structure, and its plating characteristics can be improved through anode treatment. The conditions for black rhodium plating and anode treatment are shown in Table 5-5.
Table 5-5 Process Conditions for Black Rhodium Plating and Its Anode Treatment Conditions
プロセス 項目 Prerequisite
Electroplating Plating solution composition

Rhodium Concentration

Sulfuric acid concentration

Additives

2. 5〜3. 5g/L

25〜30g/L

適切な量

Plating conditions

温度

Cathode current density

Stirring

Maximum thickness

20〜25℃

2〜4 A/dm2

Cathode Vibration

0. 5μm

Anodizing Treatment solution Anode treatment fluid 100g/L
Treatment conditions

温度

Tank Voltage

Processing time

20〜30℃

3V

2〜3min

1.5 Rhodium Plating Equipment

(1) Power Supply: 

Flash plating for decorative purposes is not problematic, but the ammeter’s scale must be considered when performing thick plating. It is also preferable to have a three-phase full-wave waveform.


(2) Plating Tank: 

Stainless steel tanks coated with polyvinyl chloride can be used. The plating solution temperature for rhodium plating is mostly 40~50℃, and the current efficiency is not very high. Good ventilation equipment is needed to handle sulfuric acid mist.


(3) Filtration: 

This also depends on the tank size. Continuous filtration is generally not used since it is strongly acidic, and the plating solution is expensive. When organic impurities are mixed in, external tank filtration is usually employed.

1.6 Troubleshooting Rhodium Plating
Table 5-6 Common faults and countermeasures of rhodium plating.
Table 5-6 Common Faults and Countermeasures of Rhodium Plating
Faults Countermeasures
ひび割れ

Confirmation of rhodium concentration usually occurs when the concentration is low.

Confirmation of acid concentration usually occurs when the concentration is low.

Confirmation of plating bath temperature, usually occurs when the temperature is low.

Poor bonding Confirmation of the previous process is usually necessary because the activity of the base metal is not sufficient.
Increase in sulfuric acid concentration If the concentration is too high, the cathode current efficiency will be reduced. It can be recycled, or the plating solution can be heated to evaporate the excess sulfuric acid, cooled down and added with pure water, and then the rhodium can be turned into rhodium hydroxide with sodium hydroxide and filtered, then washed with pure water, and finally dissolved with sulfuric acid.
Dark gray plating The rhodium plating tank is generally of small capacity, and the anode used is insoluble anode, so the composition of the plating solution fluctuates greatly. The low concentration of acid will cause hydrolysis and precipitation of rhodium, which will make the plating layer become dark gray. Rhodium hydroxide precipitates slowly at pH2, and the precipitation increases when the pH is 3~4, so it is very important to manage the concentration of sulfuric acid.

2. Rhodium Alloy Plating

Alloy plating of rhodium has not been much studied. The earlier ones are Rh-Ni alloy plating.Smith applied for the patent of Rh-Ni alloy plating from acetate sulfate solution. Its main component is Rh 0.4g/L, Ni 3.5~13.5g/L sulfate, pH 1.7, current density 4~10A/dm2. Alloys containing 25%~100% Rh can be obtained. Using the same series, Rh-Co alloy can be obtained if Co is used instead of Ni.

Aotani researched Rh-Zn alloys. The representative process is shown in Table 5-7.

Table 5-7 Sulfate Plating Rh-Zn Process
Ingredients and their process conditions Formulation and concentration of components

Rh[in the form of Rh2(SO4)3]

Zn (in the form of ZnSO4 • 7H2O

Na2SO4 - 10H2O

H33

Current density

0. 03 ~ 1. 0g/L

5 ~ 40g/L

23g/L

10g/L

3 ~ 9A/dm2

Rh-Ir alloy has good corrosion resistance, dense crystallization, and strong adhesion and can also be used as an anode for electrolysis in decorative and functional plating.

The main components of the Rh-Ir alloy plating solution are metallic rhodium salt, metallic iridium salt, fluoroborate as a conductive salt, fluoroboric acid, and amidosulfonic acid (amidosulfonic acid also has a stress-relieving effect) as pH buffers. Additionally, boric acid can be added to prevent the hydrolysis of fluoroboric acid. The plating solution is used at a temperature of about 50~70℃, with a current density of about 2~10A/dm2, which can produce a dense alloy plating layer with strong adhesion.

Electroplating example: Rhodium salt is derived from the reaction of RuCl3·3H2O and NH2SO4H. Iridium salt is derived from the reaction of (NH4)2IrCl6 and NH2SO3H. The mass ratio of Rh-Ir in the plating solution is adjusted to 1/1. Different results can be obtained by changing the content of each component in the plating solution (see Table 5-8).

Table 5-8 Ru-Ir Alloy Plating Solution Composition and Conditions
Ingredients and their process conditions No. 1 No. 2 No. 3 No. 4

Ru/(g/L)

Ir/(g/L)

NaBF4/(g/L)

NH2SO3H/(g/L)

Current density/(A/dm2)

Plating solution temperature/°C

pH

Ir content in plating layer/%

8〜9

8〜9

100

30

3

70

0. 9

3〜4

8〜9

8〜9

100

20

3

70

0. 8

5〜6

3〜4

3〜4

75

14

2

60

0. 9

8〜9

3〜4

3〜4

75

4

2

60

1. 2

23 〜24

The resulting plating layer has no cracks and is glossy.

In decoration, the natural color of stainless steel or the pale blue-white of chrome plating can no longer meet people’s needs. People prefer a clean, bright appearance similar to silver plating. However, the silver plating layer easily oxidizes and discolors in the air. Rhodium alloy plating can save precious rhodium and significantly improve the coating’s performance (see Table 5-9).

Table 5-9 Plating Solution Composition and Process Conditions for Rhodium-Ruthenium Alloy Plating
Composition and its process conditions Formulation and concentration of components

Rhodium salt [Rh2(SO4)3]

硫酸

Ruthenium salt

Additive (Type 8701)

温度

Cathode current density

Anode

Stirring method

1〜2g/L

30mL/L

0. 1〜1g/L

25g/L

40〜50℃

2〜8A/dm2

Ruthenium coated titanium mesh

Cathode movement

Section III Chemical Rhodium Plating

Like chemical plating of other metals, the advantage of chemical plating is that it does not require the substrate to be conductive and is suitable for various shapes. Because the dispersibility of chemical plating is much better than that of electroplating, at the same time, during electroplating, P may be incorporated into the plating layer, and the purity of rhodium has a significant adverse effect on its corrosion resistance and catalytic performance. Some data suggest that when precious metals contain 0.01%~0.001% P, S, and Cl, gas turbines’ corrosion resistance and service life will be reduced by 25%.

Alexander S. Kozlov also proposed a patent for chemical rhodium plating. Its main components are soluble metal salts, complexing agents, and reducing agents. If necessary, PH buffers and some additives such as stabilizers and surfactants can also be added. This composition contains no harmful substances or volatile components, which can prevent the accumulation of by-products and thus avoid the aging of the plating solution. At the same time, the plating solution can also deposit the metal components by boiling off unwanted components through evaporation.

Its metal salt is Rh (NH3)3 (NO2)3. The main components can be obtained by reacting K3[Rh(NO2)3Cl3] with ammonia water as follows: Rh(NH3)3 (NO2)3 (metal ions), ammonia water (complexing agent), and hydrazine hydrate (reducing agent).

The main reaction of typical chemical rhodium plating is as follows:

Rh(NH3)3(NO2)3 + 0.75 N2H4·H2O → Rh + 3.75N+ 6.75H2O

From the reaction equation, the metal deposition reaction does not produce harmful by-products or accumulative substances. Ammonia can form a stable complex with rhodium, thereby preventing the decomposition of rhodium ions. Moreover, this reaction is autocatalytic. Table 5-10 shows some experimental results.
Table 5-10 Experimental Results of Chemical Rhodium Plating
Composition and process conditions No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8

Rh(NH3)3(NO2)3

NH4OH

N2H4·H2O

Plating material

Pre-treatment

Pre-treatment

Reaction time

Plating thickness

Surface condition of plated layer

特徴

3. 2g/L

50ml/L

1. 5g/L

Nickel Foil

Sandpaper Roughening

70℃

10min

0. 2μm

Dense and bright

Corrosion Resistant

1g/L

200ml/L

1g/L

Inconel Foil

Sandpaper Roughening

85℃

15 min

0. 4μm

Dense and bright

Corrosion Resistant

0. 5g/L

500ml/L

0. 7g/L

ステンレス・スチール

Acetone cleaning

75℃

30min

0. 2μm

Dense Bright

Catalytic

5g/L

100ml/L

2g/L

Mg2アル4Si5O18

Sensitized activation

60℃

30min

0. 5μm

Gray uniform

Catalyzed

1g/L

100ml/L

2. 5g/L

SiC Powder

Sensitized activation

70℃

30min

0. 03μm

Brightening

Catalyzed

1g/L

200ml/L

0. 2g/L

Glass Flake

Sensitization activation

60℃

10min

0. 1μm

Mirror bright

Mirror

3g/L

100ml/L

1. 5g/L

Aluminum Oxide

Sensitized activated

75℃

2h

2. 2μm

Not smooth gray

Electronic Components

7g/L

50ml/L

4. 5g/L

Ti plate

Sandpaper Roughening

85℃

3h

3. 5μm

Tight Semi-Bright

Inert Anode

This plating solution composition can be applied to various plated items by performing appropriate pretreatment on the plated parts.

With the development of science and technology, the demand for rhodium will also increase accordingly. They hold great potential based on the characteristics of rhodium plating layers, whether for decorative items or industrial applications. When rhodium plating is used on electrical contacts, the thickness for anti-tarnish purposes is below 0.5μm; for wear resistance purposes, the plating thickness is between 0.2~2μm; for parts with strict wear resistance requirements, the plating thickness is between 2.5~25μm. When used as an underlayer plating for gold in lead frames, it can save the amount of gold used.

コピーライト @ Sobling.Jewelry - ジュエリー カスタムジュエリーメーカー、OEMおよびODMジュエリー工場

ヘマンの写真
ヘマン

ジュエリー製品エキスパート --- 12年の豊富な経験

こんにちは、

私はヘマン、2人の素晴らしい子供の父親でありヒーローです。ジュエリー製品の専門家として、私のジュエリー経験を分かち合えることを嬉しく思います。2010年以来、HiphopblingやSilverplanetなど、世界中の29のクライアントにサービスを提供し、クリエイティブなジュエリーデザイン、ジュエリー製品開発、製造のサポートをしてきました。

宝石類プロダクトについての質問があったら、私に電話するか、または電子メールを送り、あなたのための適切な解決を論議し、職人の技量および宝石類の質の細部を点検するために自由な宝石類のサンプルを得ましょう自由に感じて下さい。

一緒に成長しよう!

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

投稿カテゴリー

ジュエリー制作のサポートが必要ですか?

ソブリングへのお問い合わせ
202407 heman - ジュエリー製品のエキスパート
ヘマン

ジュエリー製品のエキスパート

こんにちは、

私はヘマン、2人の素晴らしい子供の父親でありヒーローです。ジュエリー製品の専門家として、私のジュエリー経験を分かち合えることを嬉しく思います。2010年以来、HiphopblingやSilverplanetなど、世界中の29のクライアントにサービスを提供し、クリエイティブなジュエリーデザイン、ジュエリー製品開発、製造のサポートをしてきました。

宝石類プロダクトについての質問があったら、私に電話するか、または電子メールを送り、あなたのための適切な解決を論議し、職人の技量および宝石類の質の細部を点検するために自由な宝石類のサンプルを得ましょう自由に感じて下さい。

一緒に成長しよう!

フォローする

ソブリングを選ぶ理由

Sobling チームメンバー シルバージュエリー製造工場
認証

ソブリングは品質基準を尊重する

ソブリングは、TUV CNAS CTCなどの品質証明書に準拠しています。

最新の投稿

図3-2-2 カラフルな翡翠(ブレスレットの個々の翡翠ビーズには、灰紫色、橙黄色、油性灰緑色、青緑色、黄緑色など、さまざまな色がある。各ビーズの色はかなり均一である)。

宝石の集合体:定義、光学、力学的特性の理解

宝石の集合体がどのように形成されるのか、その結晶構造、そしてジュエリーのデザインにどのような影響を与えるのか、宝石の世界を探検しましょう。硬度、劈開、キャッツアイのような特殊効果について学びましょう。ジュエラー、デザイナー、小売業者のいずれであっても、このガイドは、魅力的で耐久性のあるジュエリーのための完璧な宝石用原石の集合体を理解し、選択するのに役立ちます。

続きを読む "
図2-11 印象的な赤を使ってブランドを強調する

完璧なジュエリー・ショップのディスプレイとスペースをデザインするには?

このガイドブックでは、宝飾店のデザインとディスプレイの重要な側面を取り上げています。外観、エントランス、照明、ウィンドウ・ディスプレイのヒントが満載。店舗のレイアウト、素材の選び方、安全なディスプレイの方法などを学ぶことができます。ジュエリーショップ、ブランド、デザイナー、オンライン販売者に最適です。

続きを読む "
手作業で成形された蜜蝋

ジュエリーのワックスモールドの作り方私たちの簡単なガイドでジュエリーのワックスモデリングの秘密を明らかにする

ワックスを使ったジュエリー作りのコツを学びましょう!このガイドでは、正しいワックスの選び方、細かいデザインの彫り方、創造的な形を作るための柔らかいワックスの使い方を教えます。さらに、丈夫で美しいジュエリーを作るために、ワックスを金属に鋳造するプロのコツもご紹介します。

続きを読む "
ダイヤモンド

時代を超越し、常に新しい - 宝石界の5人の王たち

宝石購入の内部スクープを入手。ダイヤモンド、エメラルド、サファイアについて学びましょう。カラーグレード、クラリティ、ベストバイを理解する。ジュエリー・ビジネスやカスタム・デザインのための宝石の選び方や価値を知る。

続きを読む "
ベリル

宝石の組成、特性、結晶学的特性と検査機器

宝石の世界に飛び込もう!ダイヤモンド、サファイア、エメラルドの特徴を学びましょう。自然がどのようにしてこれらの美しい宝石を形成するのか、そしてどのようにカットすれば最高の輝きを放つのか。魅力的で高品質な宝石で顧客に感動を与えたい宝飾品メーカーや販売業者にとって、必読の書です。

続きを読む "
Figure 1-5 Diamonds in Various Crystal Forms

ダイヤモンドの特性についてどこまで知っていますか?

Diamond, pure carbon, hardest natural gem, symbolizes eternal love. Types I (contains nitrogen) and II (nitrogen-free). Famous for brilliance, fire, and excellent thermal conductivity. Colorless to yellow most common; fancy colors are rare. Popular cuts: Round Brilliant and fancy shapes. Ideal for jewelry design and sales.

続きを読む "

10%オフ

すべての一次オーダーについて

ニュースレターに参加する

最新情報をお届けします!

ソブリングジュエリーメーカー あなたのジュエリーのための見積もりを得る
究極のソーシング・ガイド - 新規サプライヤーからの調達を数百万ドル節約する10のヒント
無料ダウンロード

ビジネスソーシングの究極ガイド

新しいサプライヤーからの宝飾品調達に役立つ10のヒント
Soblingジュエリーメーカー あなたのジュエリーデザインのための無料のカスタマイズ

ジュエリー工場、ジュエリーカスタマイズ、モアッサナイトジュエリー工場、真鍮銅ジュエリー、半貴石ジュエリー、合成宝石ジュエリー、淡水パールジュエリー、スターリングシルバーCZジュエリー、半貴石宝石カスタマイズ、合成宝石ジュエリー