What is Ruthenium Plating and How Can It Enhance Your Products?

Ruthenium plating creates a hard, silver-white or black finish for jewelry. It offers excellent wear resistance, corrosion resistance, and a stable decorative layer for items like rings, necklaces, and watches, enhancing their durability and value.

What is Ruthenium Plating and How Can It Enhance Your Products?

Ruthenium Plating for Jewelry: Hard, Black, White Finishes Guide

Inledning:

Ruthenium plating is an electroplating process that deposits a layer of ruthenium, a hard, silver-white platinum group metal. But what are its key benefits? This plating offers exceptional hardness (Hv 640), superior wear and corrosion resistance, and excellent heat resistance. It can produce both decorative white finishes and stable black finishes (using additives like thiourea). While the plating layer can have high internal stress, methods exist to reduce it. This article details the plating solutions, process conditions, and properties, explaining why ruthenium is used for jewelry, watches, and electronic components like relay contacts.

what is ruthenium plating and how can it enhance your products

Innehållsförteckning

Avsnitt I Översikt

Ruthenium has an atomic number of 44 in the periodic table, with the element symbol Ru. It is a silvery-white metal, hard and brittle, discovered by J.J. Berzelius and G.W. Osann in 1828. It dissolves in strong acids and reacts slowly with aqua regia.

Common parameters of ruthenium are shown in Table 7-1.

Table 7-1 Common Parameters of Ruthenium
Characteristic parameters Characteristic value

Element Name, Element Symbol, Atomic Number

Classification

Group, Period

Density, hardness

Färg

Relativ atommassa

Atomradie

Compound value

Oxidation value

Crystalline structure

melting point

Kokpunkt

Förångningsvärme

Heat of dissolution

Specifik värmekapacitet

Conductivity

Thermal conductivity

Ruthenium、Ru、44

Transition metal

8(Ⅷ)、5

12370kg/m3、6. 5

Silvervit

101.07

130pm

126pm

2、3、4、6、8

Precision hexagonal structure

2607K (2334℃)

4423K (4150℃)

595kJ/mol

24kJ/mol

234J/(kg • K)

13. 7X106m •Ω

117W/(m • K)

Ruthenium is widely used in industrial chemical catalysts, electronic components, dental alloys, decorative items, stationery, pharmaceuticals, etc. After adding alkali metals, ruthenium alloys are highly active catalysts for ammonia synthesis. To prevent global warming and control automobile exhaust emissions, various countries around the world are continuously developing different fuel cells. For example, 30%~50% ruthenium alloys added to platinum group metals can be used as catalysts for methanol fuel cells. In non-silicon series dye-sensitized solar cells, using ruthenium complexes as the dye layer has improved conversion efficiency, thus attracting much attention. Currently, the applications of ruthenium are developing in multiple fields and aspects, although its annual usage is still less than that of platinum and gold.

The characteristics of metallic ruthenium and comparisons with rhodium and palladium of the same platinum group are shown in Table 7-2.

Table 7-2 Characteristics of Metal Ruthenium, Rhodium, and Palladium
Properties Metal type
Ru Rh Pd

Atomic Number

Relativ atommassa

Crystalline structure

Densitet (20℃)/(g/cm3)

Melting point (20℃)/°C

Boiling point/°C

Hardness(after annealing)/Hv

Resistivity (20℃)/μΩ-cm

Redox potential/mV

44

101.07

Densest pore square crystal

12. 45

2310

4052

240

6. 71

0. 68

45

102. 91

Face-centered cubic crystal

12.41

1960

3687

100

4. 33

0. 78

46

106. 4

Face-centered cubic crystal

12. 02

1552

2870

40

9. 93

0. 92

From the table, it can be seen that the melting point and boiling point of the pin are higher than those of rhodium and palladium, with greater heat resistance and arc resistance; the electrical resistivity is lower than that of palladium; the hardness after annealing is much higher than that of rhodium and palladium. In terms of electrochemical properties, the standard oxidation potential of the pin (0.68) is lower than that of rhodium. (0.78) and palladium (0.92); the electrode potential of the pin in an acidic medium is about (standard hydrogen electrode), and in an alkaline medium, is 0.4V (pH 12, standard hydrogen electrode).

Among the platinum group metals, the chlorinated overvoltage of the oxides of rhodium and ruthenium (RuO2) is very low, exhibiting excellent catalytic performance and good corrosion resistance.

Section II Electroplating Rhodium

Electroplating rhodium began in 1936 when Zimmermann obtained ruthenium from a RuNOCl3·H2O solution oxidized in hot air to form a thin oxide film (RuO2). This oxide film is very similar to the oxide film on metallic Ti. Ruthenium oxide is insoluble in cold or hot acids and aqua regia. Metallic rhodium is very hard; wear resistance tests have shown that it is more wear-resistant than rhodium.

Although Ru has superior physical and chemical properties, ruthenium plating has not been widely applied. This is mainly because Ru compounds are not stable enough, the current efficiency is low, and the internal stress of the ruthenium plating layer is also relatively high.

Later, after much research, many patents also emerged. Reid and others conducted a detailed comparison of various plating solutions. Ru belongs to the light platinum group and has special properties. Table 7-2 compares three light platinum metals (Note: heavy platinum metals are Os, Ir, Pt). In ruthenium plating, ruthenium salt nitro-chloride salts are mainstream, and the types of free acids vary. Conn considers the sulfonic acid plating solution in Table 7-3 best.

Table 7-3 Composition and Conditions of Ruthenium Plating Solution
Composition and process conditions Formulation and concentration of components
Nitrosyl chloride ruthenium plating solution Potassium tetrachlorohydrate ruthenate plating solution Ruthenium sulfate: white ruthenium plating Ruthenium sulfate solution: black ruthenium plating

Nitrosoruthenium chloride/(g/L)

Ruthenium concentration/(g/L)

Potassium ruthenate tetrachlorohydrate/(g/L)

Ruthenium concentration/(g/L)

Potassium dihydrogen phosphate/(g/L)

Ruthenium sulfate/(g/L)

Ruthenium concentration/(g/L)

Sulfamic acid/(g/L)

Phosphoric acid/(mL/L)

Sulfide/(g/L)

рH

Temperature/°C

Strömtäthet/(A/dm²2)

10

3. 5〜4. 5

-

-

-

-

-

10〜20

-

-

-

50〜65

0. 5〜1. 5

-

-

32. 5

10〜20

110

-

-

-

50

-

1. 7

70

1

-

-

-

-

-

4. 8〜12

3. 2〜5

100

-

-

1. 2

65〜75

4〜6

-

-

-

-

-

4. 8〜12

2〜5

100

-

1

-

60〜75

3〜7

Afterward, a phosphate acidic plating solution of K3Ru2NCl8(H2O)2 salt was used on connectors to replace gold plating. The structure is shown in Figure 7-1.
Figure 7-1 Molecular structure of K3Ru2NC18(H2O)2
Figure 7-1 Molecular structure of K3Ru2NCl8(H2O)2

1. Metal Ruthenium Plating Process Specifications

Adding aminomethanesulfonic acid and others to inorganic salts such as ruthenium sulfate and ruthenium chloride forms very stable complex salts with these salts, suitable for plating solutions, industrially used for plating and decorative plating of functional electronic products such as magnetic wire switches, relays, and connectors.

The main reason for the instability of the usual tin plating solution is that the ruthenium ions are unstable and easily decompose in the plating solution to produce fine, powdery suspensions or precipitates. These co-deposits cause the surface of the plating layer to be rough, failing to meet the smoothness requirements of electronic product contacts; at the same time, ruthenium ions in the plating solution can also form oxide or hydroxide precipitates on the anode; during continuous operation, this leads to a low deposition rate. Some patents provide plating technology that achieves rapid deposition, color development by color developers, anode oxidation protection by anode sacrificial agents, and plating solution stability by adding reagents that increase the deposition rate in a stable plating solution of aminomethanesulfonic acid complex salts.

Tin plating can be divided into white tin plating and black ruthenium plating according to the color tone of the plating layer.


(1) Electroplating White Ruthenium

The parameters of the white plating solution are shown in Tables 7-4 and 7-5.

Table 7-4 General Parameters for Plating White Ruthenium with Sulfate Ruthenium Plating Solution
Composition and process conditions Control value Beskrivning
Ruthenium sulfate/(g/L) 1〜25 Optimum value: 2~10g/L
Sulfamic acid/(g/L) 5〜100

Stabilizer and concentration:

sulfuric acid or sulfate 60~200g/L, sulfamic acid or sulfamate 20~60g/L

Halogenated elements or halides of anions Above 100mL/L

Deposition speed promoter:

Ammonium halide, metal halide, alkali metal halide, etc. 100mL/L~10g/L; or halogen (one of F, Cl, Br, I) that can produce the same effect can be added directly to the plating solution, so that it reacts with the components of the plating solution to form anions.

рH 0. 5〜2
Temperature/°C <70
Strömtäthet/(A/dm²2) 2〜10
Table 7-5 Examples of White Ruthenium Plating Applications
Composition and Process Conditions Nr 1 Nr 2 Nr 3 Nr 4
Plating solution composition After dissolving ruthenium concentration of 5g/L (as ruthenium sulfate) in pure water, add ammonium sulfamate 100g/L, chloride ion 1.0g/L (as ammonium chloride) and adjust pH=1.3 with sulfuric acid. Replace ammonium chloride with ammonium bromide, all other conditions are the same as No.1 for plating. Replace ammonium chloride with ammonium iodide, all other conditions are the same as No.1 for plating. Plating without ammonium chloride, all other conditions are the same as No.1.
Operating conditions

Anode: white gold; cathode: gold-plated brass.

Temperature:70℃; Current density:5A/dm2; Time:50min

Deposition rate/(μm/min) 0. 0472 0. 0440 0.0508 0. 0315
Thickness of plating layer/μm 2.36 2.20 2.54 1.58
From the above results, adding halogen elements or anionic halides to the plating solution can increase the deposition rate of the coating and stability, resulting in a uniform, high-quality, thick coating with a thickness above 5μm. Using halogens, the plating layer is different from the usual dark color of ruthenium plating. It appears as a beautiful white color.


(2) Electroplate Black Ruthenium 

The black plating solution is easy to manage, with good adhesion between the plating layer and the bright substrate and good corrosion and wear resistance. During the plating process, the sacrificial oxidant ammonium sulfate (hydroxy) suppresses the anodic oxidation and decomposition reactions of the color developer thiol compounds, ensuring the strong blackness and stability of the plating layer. Tables 7-6 and 7-7 show some parameters of the black plating solution.

Table 7-6 Some Parameters of Black Ruthenium Plating in Sulfuric Acid Ruthenium Plating Solution
Composition and process conditions Control value Explanation
Ruthenium concentration/(g/L) 1〜10 Used in the form of ruthenium sulfate
Ammonium sulfamate/(g/L) 5〜150 Stabilizer, inhibits anodic oxidation and enhances cathodic reduction of ruthenium ions.
Thiourea/(g/L) 1.0〜5.0

Colorant: Thiourea, thiourea derivatives, thiourea compounds, mercaptans, dibutyric acid, ammonium thiocyanate, etc. are used.

Thiourea is the most suitable coloring agent considering the stability and price of the drug.

Ammonium (combined) hydroxyl(base) sulfate/(g/L) 1〜100

Sacrificial oxidizing agent: one of the following: ammonium sulfate, formaldehyde, vitamin C, etc.

Among them, ammonium sulfate (combined) hydroxyl (base) is the most effective, and oxides do not affect the plating layer

рH <2
Temperature/°C Above 40
Strömtäthet/(A/dm²2) 5〜15
Table 7-7 Application Examples of Black Ruthenium Plating
Composition and Process Conditions Nr 1 Nr 2 Nr 3
Plating solution composition

Ruthenium concentration 3g/L (as ruthenium sulfate)

Sulfamic acid 100g/L

Thiourea 1.5g/L

Hydroxylammonium sulfate 10g/L

Ruthenium concentration 3g/L (as ruthenium sulphate),

Sulfamic acid 100g/L

Thiourea 1.5g/L

Hydroxyl ammonium sulfate 50g/L

Ruthenium concentration 3g/L (as ruthenium sulfate).

Sulfamic acid 100g/L

Thiourea 1.5g/L

Operating conditions

Anode: Platinum

Cathode: Brush gold plated nickel plated plate

Temperature:50℃

Cathode current density:5A/dm2

pH=0.1

Time:30min

Anode: Platinum

Cathode: Brush gold-plated nickel-plated plate

Temperature:50℃

Cathode current density:5A/dm2

pH=0.1

Time:30min

Anode:Platinum

Cathode: Brush gold-plated nickel-plated plate

Temperature:50℃

Cathode current density:5A/dm2

pH=0.1

Time:30min

Plating material Brush gold plating/watt-hour liquid nickel plating/brass plate
Close Energization 5A ・ h/L Black Black Light black gray
10A • h/L Black Black, Supplemental Ammonium Hydroxyl Sulfate 5g/L Light black gray, supplement thiourea 1.5g/L
15A ・ h/L Black Black, Supplemental Ammonium Hydroxyl Sulfate 5g/L Light black gray, supplement thiourea 1.5g/L
20A ・ h/L Black Black, Supplemental Ammonium Hydroxyl Sulfate 5g/L Light black gray, supplement thiourea 1.5g/L
25A ・ h/L Black Black, Supplemental Ammonium Hydroxyl Sulfate 5g/L No bright gray-brown color, turbid plating solution, supplement thiourea 3g/L.
30A ・ h/L Black Black, Supplemental Ammonium Hydroxyl Sulfate 5g/L No bright gray-brown color, turbid plating solution, supplement thiourea 3g/L.
From the above results, it can be seen that the decrease in the blackness of the black plating layer is due to the oxidation and loss of function of the color developer thiol compounds at the anode. The sacrificial oxidant undergoes oxidation reactions at the anode, effectively controlling the oxidation of the thiol compounds, thereby ensuring the blackness of the plating layer.

2. Characteristics of the Plating Solution

Figure 7-2 shows the current-potential curves for an aqueous solution of ruthenium sulfate (curve 1) and an aqueous solution of ruthenium sulfate with added sulfamic acid (curve 2). The current value of the aqueous ruthenium sulfate solution without sulfamic acid is very small, 0.03 A, even when the potential is loaded to -1 V (Ag/AgC1 standard), and a current value of 0.3 A is observed at -1 V with the addition of sulfamic acid. The conductivity of ruthenium sulfate aqueous solution is very low, and after the addition of sulfamic acid, it forms a ruthenium-sulfamic acid complex with ruthenium, which increases the conductivity and therefore increases the current value.
Figure 7-2 Current-potentials of aqueous solutions of ruthenium sulfate and aqueous solutions of sulfamic acid added to ruthenium sulfate. Curve 1 - aqueous solution of ruthenium sulfate; 2 - aqueous solution of ruthenium sulfate with added sulfamic acid

Figure 7-2 Current-potentials of aqueous solutions of ruthenium sulfate and aqueous solutions of sulfamic acid added to ruthenium sulfate.

Curve 1 - aqueous solution of ruthenium sulfate; 2 - aqueous solution of ruthenium sulfate with added sulfamic acid

3. Applications of Ruthenium Plating Layers

Table 7-7 Adding aminomethanesulfonic acid to sulfuric acid ruthenium plating solution can produce a white ruthenium plating layer with a metallic tone, suitable for magnetic wire switches, relay contacts, and anodes for electrolytic salt production. After adding additives, a stable black ruthenium plating layer can be obtained, which can be used for decorative plating on glasses, watches, pins, necklaces, earrings, collar pins, etc., and can replace black chromium to improve the added value of decorative items. Due to environmental protection, the use of chromium has gradually decreased in recent years, and the use of black ruthenium plating layers has been continuously increasing.

Rhodium and other platinum group metal coatings are extremely difficult to peel off from the substrate coating. However, ruthenium plating layers are easily peeled off during reverse electrolysis in alkaline stripping solutions.

4. Methods for Evaluating the Properties of Ruthenium Plating Layers

After mirror polishing the brass plate (30mmX 40mmX0.5mm), a 5μm nickel base layer is plated in a Watts bath, followed by a 2μm or 5μm ruthenium plating layer as test pieces. Test pieces with the same thickness of palladium or rhodium plated on the same nickel base layer are used for comparison. Their performance comparison is shown in Table 7-8.
Table 7-8 Characteristics Evaluation of White Ruthenium Plating Layer
Properties Ru Rh Pd

Hårdhet Hv

Abrasion resistance(wear amount)/mg

Contact resistance(after plating)/mΩ

Contact resistance(after SO2 gas corrosion)/ma

Heat resistance(300℃,30min)

Solderability(Zero-crossing time)/s

Plating internal stress/(kgf/mm2)

H2 content/x10-6

640

0. 2

7. 4

8.8

O

6. 2

85,Tension

1590

830

0. 1

7. 4

8.8

O

5. 6

31,Tension

130

280

3. 6

4. 1

4. 4

4

81,Tension

220

Note: ○ Good; △ Average.

The evaluation items are as follows.

Microhardness: measured using a microhardness tester (Teraoka type M-2), with a force of 5gf, duration 30 s, using Vickers hardness.

Abrasion resistance: Measured and evaluated concerning JIS H 8503 “Methods for measuring precious metal plating layers.” The abrasion resistance test uses an abrasion tester with a force of 500 gf, contact area of 3.75cm2, and 1500# water sandpaper rubbed back and forth 200 times. Evaluation is based on the reduction in friction mass.

Contact resistance: The contact resistance was measured using a contact resistance meter (MS880 made by KS Parts Research Institute) with a force of 0.1 to 100gf, a measurement current of 1mA, a sliding distance of 0 mm, and a K625R probe. The exposure test was conducted in the same way after exposure to SO2 gas at 40°C, 80% humidity, and a volume fraction of 10-5 for 24h, after which the contact resistance was measured as described above.

Heat resistance: Using a uniform electric furnace to heat the atmosphere at 300℃ for 30 minutes. After heating, the plated layer is visually inspected.

Solderability: Evaluated using the Solder-Checker tester. The solder is a lead-tin alloy, and the flux is rosin methanol. The test conditions are 230℃, immersion depth of 6 mm, force of 5gf, time 5 s, speed of 16mm/s. Zero cross-time evaluation is conducted according to the meniscus test method.

Internal Stress:The internal stress of the electrodeposits was measured by using a spiral wire slip method stress gauge and plating a 2μm layer under each plating standard condition.

5. Mechanical and Electrical Properties of the Ruthenium Plating Layer

From Table 7-3, it can be seen that the Vickers hardness of the plating layer is 640, which is much higher than that of the palladium plating layer, slightly lower than that of rhodium (830 Hv), and three times that of the annealed metal plating in Table 7-2.

The wear resistance of ruthenium plating is comparable to that of rhodium plating used in magnetic wire switches, relays, sliding switches, and other wear-resistant applications. It is even superior to general rhodium plating, making it more suitable for electronic components with high wear resistance requirements and decorative parts.

The contact resistance on the surface of the ruthenium plating was 7.4mΩ, which was slightly higher than that of the palladium 4.1mΩ. The probe tip plating was similar to the rhodium plating. The contact resistance changed slightly after exposure to SO2 gas with a volume fraction of 10-5 for 24 h. However, similar to the rhodium plating of the contact probes, the contact resistance was very stable.

In terms of heat resistance, ruthenium has excellent heat resistance. After heating in the atmosphere at 300℃, the surface oxidation discoloration of the plating layer shows that palladium and rhodium exhibit slight discoloration, while ruthenium shows no discoloration. Palladium forms oxides at 300~350℃, and literature records indicate that rhodium and ruthenium remain stable under 700℃.

Using a tin-lead alloy plating solution, the solderability is evaluated using the meniscus test’s zero-crossing time method. Compared to the wetting speed of gold plating with a zero-crossing time of 1 second, platinum group metals are about 4~6s slower. Compared to palladium, which is the fastest at 4 seconds, ruthenium is 6 seconds. Therefore, appropriate flux and soldering conditions must be selected when soldering on ruthenium plating.

The deposition stress of the plating layers of pins, rhodium, and palladium are all tensile stresses. Among them, the plating layer of pins and palladium is similar, with high tensile stress, which is one of the causes of crack formation.

The hydrogen absorption amount in the plating layer after plating pins, compared with palladium’s 220X10-6, rhodium’s 130X10-6, and ruthenium’s 1590X10-6, is quite large. Many literatures record that palladium is widely used as a hydrogen absorption material, so pins are expected to become a new material to replace palladium.

6. Composition, Structure, and Configuration of the Ruthenium Plating Layer

Figure 7-3 shows the surface analysis results of the white and black ruthenium plating layers obtained from the sulfuric acid ruthenium plating solution.
Figure 7-3 AES spectra of the outermost surface of the white and black ruthenium plating layers
Figure 7-3 AES spectra of the outermost surface of the white and black ruthenium plating layers
Figure 7-4 Depth profile AES analysis results of the black ruthenium plating layer. Ru, O, and S were detected in the white and black ruthenium plating layers using AES electron spectroscopy.
Figure 7-4 The depth profiles of S in the black ruthenium plating layer on the copper substrate.
Figure 7-4 The depth profiles of S in the black ruthenium plating layer on the copper substrate.

O and S are not only present on the very surface of the plating layer but also distributed inside the plating layer. Sulfides were added to the black ruthenium plating solution, and sulfur co-deposition occurred due to the decomposition of this compound. As shown in Figure 7-3(a), traces of sulfur were also detected in the white ruthenium, which can be assumed to be co-deposited with the ruthenium after decomposition of the complex sulfamic acid. From this, it can be inferred that the source of S in the black ruthenium plating layer is the sulfide and aminomethanesulfonic acid during blackening.

To better understand the ionic states in the black ruthenium plating layer, XPS (X-ray photoelectron spectroscopy) was used to detect the S 1s peaks in the white ruthenium and black ruthenium plating layers. S 1s was not detected in the white ruthenium but in the black ruthenium, mainly because sulfides were added to the black ruthenium plating solution. Based on the relative sensitivity factor and peak area, the sulfur content was calculated to be approximately 10% (atomic ratio). As shown in Figure 7-5, the S 1s peak of the black ruthenium plating layer has two peaks at about 162 eV and about 164 eV, corresponding to two different sulfur bonding states.

Figure 7-5 XPS spectrum of the ruthenium plating layer
Figure 7-5 XPS spectrum of the ruthenium plating layer

Section III Attempts to Improve the Ruthenium Plating Layer

Generally, the plating layer’s stress increases with the plating thickness. Renate Freudenberger et al. found through experiments that pyridine and N-alkyl pyridinium salts reduce the internal stress of the ruthenium plating layer. The stress calculation formula is:
Generally, the plating layer's stress increases with the plating thickness. Renate Freudenberger et al. found through experiments that pyridine and N-alkyl pyridinium salts reduce the internal stress of the ruthenium plating layer. The stress calculation formula

In the formula, 

σ— internal stress of the plating layer, N/mm2;

t— Coating thickness, mm;

E— Elastic modulus of the test strip, N/mm2;

d— Length of the test strip, mm;

x— Length change, mm;

L— Sample peel length, mm.

The structural formula of the pyridinium salt used is:
The structural formula of the pyridinium salt
In the formula, R⊖ is
The structural formula of the pyridinium salt
Or one of —(CH2)3—SO3㊀, —CH2—CHOH—CH2—SO3㊀.
R’ is H or an alkyl group containing 1~6 carbon atoms, or one of —CH=CH2, —CO2Na.

Preparation of the main components of the plating solution (preparing a 50g/L Ru solution): Take 200 g of amino sulfonic acid, add it to a reflux apparatus containing 400 mL of deionized water (the reflux apparatus is placed in a constant temperature bath), then add 120 mL of ammonia water, and heat to 50℃. Add 50 g of Ru (added as ruthenium chloride hydrate), boil the solution for 4 hours, then filter with a 1μm filter. Finally, the obtained solution is diluted to make 1 L, resulting in a solution containing Ru. When in use, dilute it 10 times (i.e. Ru 5g/L, ) for use in experiments.

No.1: Add 2g/L of pyridinium propane sulfonate to the solution prepared above.

No.2: Add 2g/L of pyridinium hydroxypropanesulfonate to the solution prepared above.

The preparation of plating solution No. 3 is as follows: take 150g of amino sulfonic acid, add 400mL of deionized water and 25g of Ru (added in the form of ruthenium chloride hydrate) into a reflux apparatus (the reflux apparatus is placed in a constant temperature liquid bath) and heat to boil for 4 hours, then filter with a 1μm filter. Finally, the obtained solution is diluted to make 500mL of solution, resulting in a solution containing 50g/L Ru. When in use, dilute it 10 times (i.e., Ru 5g/L) for use.

The test results of No. 1 to No. 3 are shown in Table 7-9.

Table 7-9 Comparison Results of Stress in Electroplated Ruthenium
Composition and its process conditions Nr 1 Nr 2 Nr 3

Ruthenium concentration/(g/L)

рH

Temperature/°C

Strömtäthet/(A/dm²2)

Current efficiency/%

Plating thickness/μm

Internal stress/(N/mm2)

5

1. 5 ~ 1. 7

70

1.

68

1. 0

250

5

1.5 ~ 1.7

70

1

69

1. 0

252

5

1. 5 ~ 1. 7

70

1

70

1. 0

489

From the table, it can be seen that the internal stress of No. 1 and No. 2, which contain stress relievers, is significantly reduced, indicating that pyridine and N-alkyl pyridinium salts indeed have the effect of reducing the internal stress of the rhodium plating layer.

Additionally, there are reports of blowing air into the plating solution to increase crack-free plating layers. The preparation process of this plating solution is to add 160 g of amidosulfonic acid to 83 g of ruthenium chloride solution. Boil for 3 hours, cool to room temperature, and cool to 5℃ to obtain 56 g of ruthenium-containing compound. Dissolve 36.5 g of the complex in 1 L of water and adjust the pH to 9.0 with ammonia water, obtaining 24 g of the nitrogen-hydroxide compound of the ruthenium. Dissolve this 24 g compound in 300 mL of pure water, add 15 mL of 98% sulfuric acid, boil for 1 hour, and cool to room temperature.

The plating solution is prepared by adding 40g/L ammonium sulfamate and 120g/L ammonium sulfate, pH=1.5 (adjusted with sulfuric acid) to the complex containing palladium obtained in this way (Ru 5g/L). The results of aeration and plating tests conducted on this prepared plating solution are shown in Table 7-10.
Table 7-10 Effect of Air Blowing on Crack-Free Plating Thickness of Plating Solution
Serienummer Blowing air volume/(mL/L) Plating speed/(μm/min) Crack-free plating thickness/μm

1

2

3

4

5

0

100

200

500

1000

0. 100

0. 100

0. 098

0. 097

0. 095

5.2

7. 6

7.5

7. 3

7.2

Blowing air into the plating solution can increase the thickness of the crack-free plating layer.

Section IV Equipment for Plating Ruthenium

However, Ru transforms into RuO4-type compounds in actual plating solutions, which adversely affect plating. Therefore, T. A. Palumbo pointed out that placing a diaphragm between the anode and cathode and using the plating solution composition and operating conditions shown in Table 7-3 can achieve high current efficiency ruthenium plating layers.

Figure 7-6 shows the plating tank structure for plating ruthenium. This tank uses a shielded wiring design (material is Co: 49%, Fe: 49%, Ni: 2%), which has proven practical.

Figure 7-6 Plating tank structure for plating ruthenium
Figure 7-6 Plating tank structure for plating ruthenium

Section V Outlook on Ruthenium Plating

The plating layer of ruthenium and hooks is significant to the platinum group metal industry and energy-related fields such as fuel and solar cells. The ruthenium plating solution introduced in this chapter has excellent stability and is suitable for industrial production. The plating layer has excellent hardness, wear, and contact resistance, making it widely applicable in electronic and decorative plating. In particular, its excellent heat resistance and arc resistance can be used in products such as magnetic wire switches and relays. Ruthenium has a greater hydrogen absorption capacity than rhodium, palladium, and other platinum group metals. After blackening treatment using sulfides, its excellent properties can be applied to selective solar heat-absorbing black electroplating layers, chromium removal, nickel phase transformation reactions, and other new fields.

However, the market price of ruthenium has surged dramatically (see Figure 7-7), which is expected to affect its applications.

Figure 7-7 Price changes of ruthenium in the last 5 years (sourced from www.kitco.com)
Figure 7-7 Price changes of ruthenium in the last 5 years (sourced from www.kitco.com)
Bild av Heman
Heman

Expert på smyckesprodukter --- 12 års rikliga erfarenheter

Hej, kära du,

Jag är Heman, pappa och hjälte till två fantastiska barn. Jag är glad att kunna dela med mig av mina smyckesupplevelser som expert på smyckesprodukter. Sedan 2010 har jag betjänat 29 kunder från hela världen, till exempel Hiphopbling och Silverplanet, och hjälpt och stöttat dem i kreativ smyckesdesign, utveckling och tillverkning av smyckesprodukter.

Om du har några frågor om smyckesprodukt, ring eller maila mig gärna och låt oss diskutera en lämplig lösning för dig, så får du gratis smyckesprover för att kontrollera hantverket och smyckenas kvalitetsdetaljer.

Låt oss växa tillsammans!

Lämna ett svar

Din e-postadress kommer inte att publiceras. Obligatoriska fältet är märkta *

POSTS Kategorier

Behöver du stöd för smyckesproduktion?

Skicka din förfrågan till Sobling
202407 heman - expert på smyckesprodukter
Heman

Expert på smyckesprodukter

Hej, kära du,

Jag är Heman, pappa och hjälte till två fantastiska barn. Jag är glad att kunna dela med mig av mina smyckesupplevelser som expert på smyckesprodukter. Sedan 2010 har jag betjänat 29 kunder från hela världen, till exempel Hiphopbling och Silverplanet, och hjälpt och stöttat dem i kreativ smyckesdesign, utveckling och tillverkning av smyckesprodukter.

Om du har några frågor om smyckesprodukt, ring eller maila mig gärna och låt oss diskutera en lämplig lösning för dig, så får du gratis smyckesprover för att kontrollera hantverket och smyckenas kvalitetsdetaljer.

Låt oss växa tillsammans!

Följ mig

Varför välja Sobling?

Sobling Team Members silver smycken tillverkare och fabrik
CERTIFIERINGAR

Sobling respekterar kvalitetsstandarder

Sobling uppfyller kvalitetscertifikat som TUV CNAS CTC

Nyaste inlägg

Gyllene nanmu-armband

Upptäck den tidlösa charmen hos träprydnader tillverkade av naturens finaste material

Upptäck skönheten i träprydnader tillverkade av sällsynta träslag som agarträ, huanghuali och rosenträ. Lär dig mer om deras unika egenskaper och hur de tillverkas till fantastiska smycken. Från uråldrigt sjunkit trä till förstenat trä - varje smycke berättar en historia. Perfekt för smyckesbutiker, designers och e-handelsförsäljare som vill lägga till naturlig elegans i sina kollektioner.

Läs mer "
what is silver plating, how is it done, and why is it used

What is Silver Plating, How is it Done, and Why is it Used?

Learn about silver plating for jewelry. This guide covers plating processes, solutions (cyanide and non-cyanide), brighteners, and pre-plating for better adhesion. Discover silver alloys like silver-copper and silver-palladium, their properties, and how to troubleshoot common plating problems for a perfect finish. Essential for jewelers and designers.

Läs mer "
what are the key methods and applications of platinum plating in modern industry 3

What Are the Key Methods and Applications of Platinum Plating in Modern Industry?

Learn about platinum plating for jewelry! This guide covers different plating solutions like chloride and sulfate, plus alloys such as Pt-Au and Pt-Co. It’s great for jewelry stores, designers, and brands. Discover how to make your pieces more durable and attractive with detailed info on techniques and applications. Perfect for custom-made jewelry.

Läs mer "
Steg 13 Skapa ett lager med "Right Earring Pendant Color". Fortsätt färglägga det högra sjöhästformade hänget. Steg 14 Skapa ett lager med "Pearl Color". Applicera magenta som pärlornas basfärg. Definiera skuggor/högdagrar. Slutför genom att justera den övergripande ljus-mörk-kontrasten och färgbalansen för att slutföra.

Vilka är de viktigaste färdigheterna för smyckesdesign: Material, tekniker och visuell presentation?

Den här guiden är perfekt för smyckesbutiker, studior, varumärken, designers och säljare. Den beskriver hur man ritar och designar smycken med hjälp av olika material som diamanter, pärlor, jade och metaller. Lär dig steg-för-steg-tekniker för att skissa, färglägga och skapa 3D-vyer med pennor, vattenfärger, markörer och tabletter. Perfekt för specialtillverkade smycken och kändisdesign.

Läs mer "
healing armband i röd koppar

En omfattande guide till smycken och produktionsteknik i kopparlegeringar

Lär dig att skapa vackra smycken i kopparlegeringar med lättförståeliga tips om material som mässing, brons och cupronickel. Upptäck tekniker som gjutning med förlorat vax, stämpling och elektroformning samt ytbehandlingar som guldplätering. Perfekt för smyckesbutiker, designers och e-handelsförsäljare som vill tillverka unika smycken av hög kvalitet.

Läs mer "
Armband med glaspärlor

Omfattande guide om smycken av glas och färgat glas: Material, skötsel och hantverk

Upptäck skönheten i prydnadsföremål av glas och färgat glas! Lär dig mer om deras unika material, som kristall och blyfritt glas, och hur de tillverkas med hjälp av tekniker som lost-wax casting. Få tips om hur du tar hand om dessa ömtåliga smycken så att de fortsätter att skina. Perfekt för smyckesbutiker, designers och alla som vill lägga till en touch av elegans i sin samling.

Läs mer "

10% Av !!!

På alla första beställningar

Anmäl dig till vårt nyhetsbrev

Prenumerera för att få senaste uppdateringar och erbjudanden!

Sobling smyckestillverkare få en offert för dina smycken
Ultimate guide sourcing - 10 tips för att spara miljoner på inköp från nya leverantörer
Fri nedladdning

Den ultimata guiden till Business Sourcing

10 värdefulla tips kan spara miljoner för dina smycken Sourcing från nya leverantörer
Sobling smyckestillverkare gratis anpassning för dina smyckesdesigner

Smyckesfabrik, smycken anpassning,Moissanite smyckesfabrik,Mässing koppar smycken,Semi-Precious smycken,Syntetiska ädelstenar smycken,Sötvattenspärl smycken,Sterling Silver CZ smycken,Semi-Precious ädelstenar anpassning,Syntetiska ädelstenar smycken