Τι είναι η επιμετάλλωση με ασήμι, πώς γίνεται και γιατί χρησιμοποιείται;

Μάθετε για την επιμετάλλωση ασημιού για κοσμήματα. Αυτός ο οδηγός καλύπτει τις διαδικασίες επιμετάλλωσης, τα διαλύματα (με και χωρίς κυάνιο), τα λαμπρυντικά και την προ-επιμετάλλωση για καλύτερη πρόσφυση. Ανακαλύψτε κράματα ασημιού όπως άργυρος-χαλκός και άργυρος-παλλάδιο, τις ιδιότητές τους και πώς να αντιμετωπίσετε συνηθισμένα προβλήματα επιμετάλλωσης για ένα τέλειο φινίρισμα. Απαραίτητο για κοσμηματοπώλες και σχεδιαστές.

Τι είναι η επιμετάλλωση με ασήμι, πώς γίνεται και γιατί χρησιμοποιείται;

Silver Plating Guide for Jewelry: Processes, Alloys & Troubleshooting

Εισαγωγή:

This article explains what silver plating is – a process of depositing a layer of silver onto a substrate. It details how it is performed using various methods, from traditional cyanide plating solutions to modern cyanide-free alternatives, covering decorative, industrial, and high-speed plating for components like connectors. The text also explores why it’s used, highlighting its excellent conductivity, reflectivity, and application in silver alloys for enhanced properties. Finally, it provides essential troubleshooting guides for common plating faults, making it a comprehensive resource for understanding both the theory and practice of silver electroplating.

Τι είναι η επιμετάλλωση με ασήμι, πώς γίνεται και γιατί χρησιμοποιείται
What is Silver Plating, How is it Done, and Why is it Used

Πίνακας περιεχομένων

Ενότητα Ι Επισκόπηση

Silver (Ag) has an atomic number of 47 in the periodic table, with the element symbol Ag. The symbol originates from the Latin word Argentum (meaning shining thing). Its electrical conductivity, conductance, and visible light reflectivity are the highest among metals. Due to its high light reflectivity, it has traditionally been called white silver. The standard electrode potential of Ag is 0.799 V.

Silver ions have a strong bactericidal effect and are widely used as disinfectants (usually, utensils labeled as treated for sterilization have been processed using silver compounds). Silver has also been applied as a sterilization device in water purifiers in recent years. Some main parameters of silver are shown in Table 2-1.

Table 2-1 Some Main Parameters of Silver
Characteristic Parameters Characteristic Values

Element Name, Element Symbol, Atomic Number

Ταξινόμηση

Ομάδα, Περίοδος

Πυκνότητα, σκληρότητα

Metal monomer color

Σχετική ατομική μάζα

Ατομική ακτίνα

Ακτίνα ομοιοπολικού δεσμού

Chemical valency

Κρυσταλλική δομή

melting point

boiling point

Θερμότητα εξάτμισης

Heat of dissolution

Ειδική θερμοχωρητικότητα

Conductivity

Θερμική αγωγιμότητα

Silver、Ag、47

Transition metal

11.5

10490kg/m3, 2. 5

Silver white

107.8682

160pm

153pm

1

Doughnut cube

1234. 93K(961. 78℃)

2435K(2162 ℃)

250. 58kJ/mol

11. 3 kJ/mol

232J/(kg • K)

63X106m • Ω

429W/(m ・ K)

Silver is a precious metal that easily undergoes chemical changes. When sulfur compounds are present in the air (such as automobile exhaust, hydrogen sulfide in hot springs, etc.), forming Ag2S on the surface of the silver turns it black. Since ancient times, silverware has been used as tableware for the ruling class and wealthy families. There is a saying that when silver comes into contact with food containing arsenic, the tableware changes color to warn the user.

The history of silver plating is long, dating back to 1838 when G. R. Elkington and H. Elkington in the UK proposed a silver plating solution containing silver oxide, potassium cyanide, and sodium cyanide in 1838.

In 1913, F. O. Frary published a paper on using silver nitrate as a plating bath. E. B. Saniger conducted comparative studies on silver electroplating from sulfonates, nitrates, borofluorides, and fluorides, reporting that smooth plating deposits could be obtained from borofluoride solutions. In 1933, H. Hickman reported that a rotating electrode could obtain silver deposits from acidic solutions.

Silver plating has been widely used both in decorative fields and in industry. Especially in recent years, the development of silver plating on connectors for electronic and communication devices and substrates for semiconductors and integrated circuits has been rapid. Moreover, silver plating in these applications differs from conventional plating methods, typically using high-speed plating. The plating solution is generally neutral, with silver salts being potassium silver cyanide and organic acids as the main components. The development of plating for functional parts is also advancing rapidly. However, research on silver plating is still less extensive than gold plating. In particular, silver alloy plating solutions have not yet reached a practical usage level. Since the introduction of silver plating solutions, cyanide-based solutions have been predominantly used. Although there have been several improvements, the mainstream has not moved away from cyanides. Representative cyanide plating solution compositions are shown in Table 2-2. Using cyanide silver plating allows good silver coatings to be obtained over a wide range of temperatures and concentrations, and the operation control is relatively easy. Table 2-2 lists two types of plating solutions: potassium cyanide and sodium cyanide. The potassium salt type is mostly used when bright silver plating is required. The reasons are as follows:

① Fast electroplating deposition rate;

②High conductivity of the plating solution, which can ensure better dispersion and coverage capabilities;

③ Wide tolerance range for carbonates;

④ Has a smoothing effect, etc.


However, due to the high content and toxicity of cyanide, a large number of experimental studies on non-cyanide silver plating have been carried out at home and abroad. Although no plating solution comparable to cyanide has been found, some products have already been launched.

Table 2-2 Basic Composition and Process Conditions of Silver Cyanide Plating Solution
Σύνθεση και οι συνθήκες επεξεργασίας της Νο. 1 Αρ. 2 Αρ. 3
Silver cyanide (as silver)/(g/L) 25 〜 33 25 〜 33 36 〜 114
Free potassium cyanide/(g/L) 30 〜 45 45 〜 160
Free sodium cyanide/(g/L) 30 〜 38
Potassium carbonate/(g/L) 30 〜 90 15 〜 75
Sodium carbonate/(g/L) 38 〜 45
Potassium hydroxide/(g/L) 4 〜 30
Πυκνότητα ρεύματος/(A/dm2) 0. 5 〜 1. 5 0. 5 〜 1. 5 0. 5 〜 1. 0
Θερμοκρασία/°C 20 〜 25 20 〜 25 38 〜 50

Section II Decorative Silver Plating

Decorative silver plating for ornaments and Western tableware must use bright silver plating. Before the development and use of brighteners, silver decorative pieces were plated with a certain thickness of silver layer, then surface polished to achieve brightness. In 1902, Frary obtained experimental results of bright silver layers by adding a small amount of carbon disulfide ( CS2 ) to the plating solution. This marked the beginning of rapid research on silver plating brighteners.

Afterward, Wilson dissolved 28 g of carbon disulfide in 56 g of ether and added it to 1 L of silver plating, shaking the solution daily. Then, after 7~14d, 75 mL was taken from it and added to 100 L of silver plating solution, resulting in a highly bright plating layer.

Parson dissolved 6 g of carbon disulfide and 30 g of potassium cyanide in 1 L of water and, after shaking for 30 hours, took 7 mL and added it to 100 mL of silver plating solution, obtaining a good bright plating layer. The N, S, and O atoms bonded to the carbon atoms in the brightening agent cause the plating layer to become bright. Commonly used brightening agents include carbon disulfide, ketones, and a mixture of Turkish red oil, all stable brightening agents. Glycerol and potassium antimony tartrate can increase the hardness of the silver plating layer, and sodium selenite mixed with other sulfur-containing compounds helps to smooth the plating layer. All brightening agents act as depolarizers, and sulfides act in colloidal form to achieve their effect. Table 2-3 shows the composition of some silver plating brightening agents.

Table 2-3 Various Silver Plating Brighteners
Brightener Name Main Inventors
Carbon disulfide and ketone-based polymer

O. Kardos; US PAT. 2807576(1957)

O. H. A. Lammert;US PAT. 2666738(1954)

Hanson-Von Winkle-Munning;Swiss PAT. 298147(1954)

J. Wernle,Berne;France PAT. 1048094(1953)

Xanthates Sieman, Halskie;German PAT. 731962(1943)
ASK compounds (Acrolein Sulfur Disulfide Yellow Polymer) R. Erdman;Metalloberflache 1,2(1950)
Thiocarbazide H. Schlotter;German PAT. 959775(1957)
Thiocarbazide SEL-REX ( America )
Selenium and antimony compounds

R. Weiner;US PAT. 2777810(1957)

Schering;US PAT. 3215610(1966)

Sb-Bi compounds E. Rank;US PAT. 3219558(1965)
During the bright silver electroplating process, when using the sulfide brighteners described in Table 2-3 as brightening agents, the temperature of the plating solution is a very important control parameter. It is generally kept around 20℃ as much as possible; if the temperature is too high, the brightener will be consumed excessively, increasing costs.

Section III Pre-Plating Silver

Generally, during the electroplating process, because the substrate metal and the silver plating layer tend to undergo a displacement reaction resulting in poor adhesion, pre-plating silver is required. Pre-plating silver is a very important step. Typically, the characteristics of the pre-plating silver solution are very low silver ion concentration and high concentration of free potassium cyanide or free sodium cyanide. At the same time, besides the composition of the plating solution, the plating conditions also significantly impact the adhesion of the silver plating layer. They should be classified and formulated according to the substrate material. Table 2-4 shows the composition and operating conditions of pre-plating silver solutions suitable for various substrates. The silver content must be controlled at low concentration conditions for pre-plating silver, especially for materials with greatly differing ionization tendencies, such as iron-based substrates plated with silver. During the silver plating process, performing a pre-nickel plating treatment before pre-plating silver can improve the adhesion of the silver plating layer. Table 2-5 provides examples of process conditions for pre-nickel plating solutions.
Table 2-4 Composition and Operating Conditions of Pre-plating Silver Solutions
Substrate Materials Σύνθεση και οι συνθήκες επεξεργασίας της
Ag plating solution Ag-Cu plating solution
Iron base

Potassium silver cyanide:1.4~2.8g/L

Potassium cyanide:60~150g/L

Temperature:20~25℃

Current density:1.5~2.5A/dm2

Voltage:4~6V

Time:1~2min

Anode: SUS plate

Silver cyanide(in silver):0.8~1.5g/L

Copper cyanide (as copper):6.0~7.5g/L

Potassium cyanide:50~60g/L

Temperature:15~25℃

Current density:0.1~0.2A/dm2

Time:5~10min

Anode:SUS plate

Silver cyanide:1.9g/L

Copper cyanide(in copper):11.3g/L

Potassium cyanide:75g/L

Temperature:15~25°C

Current density:1.5~2.5A/dm2

Anode:4~6V

Time:2~3min

Copper base

Silver cyanide:5.6~8.3g/L

Potassium cyanide:60~90g/L

Temperature:20~35℃

Current density:15A/dm2

Voltage:4~6V

Time:1~2min

Anode:Ni plate

Table 2-5 Composition and Operating Conditions of Pre-Plated Silver Plating Solution
Σύνθεση και οι συνθήκες επεξεργασίας της Parameters Σύνθεση και οι συνθήκες επεξεργασίας της Parameters
Nickel chloride 240g/L Πυκνότητα ρεύματος 15A/dm2
Hydrochloric acid (37% by volume) 120mL/L Φορά 1〜2min
Θερμοκρασία 20〜35℃ Anode Ni plate
From another perspective of pre-silver plating, Blum and Hogaboom, through their study on silver plating of stainless steel cutlery, derived the composition of the pre-silver plating solution for stainless steel cutlery with good adhesion as shown in Table 2-6.
Table 2-6 Pretreatment Plating Solution Composition for Pre-Silver Plating of Brass Castings, Nickel Silver, etc.
Components Συγκέντρωση Components Συγκέντρωση
Mercury Chloride(HgCl2) 7. 5g/L Mercury oxide (HgO) 7. 5g/L
Ammonium chloride (NH4Cl) 4g/L Sodium cyanide 60g/L
Or

Section IV Cyanide-Free Silver Plating

Silver plating solutions have been developed primarily based on cyanide from the very beginning. To this day, high-concentration cyanide silver plating solutions are still in use. This is mainly because the stability of their complexes is unmatched by other complexes. Table 2-14 shows the stability constants of some silver complexes.
Table 2-14 Stability Constants of Silver Complexes
Complexes Stabilization constant Complexes Stabilization constant
Ag(CN)2 21.1 Ag(SO3)2 8.4
Ag(CH4N4S)3 13.5 AgBr43- 8.3
AgI43- 13.4 Ag(en)2 7.4
Ag(S2O3)2 12.5 Ag(NH3)2+ 6.5
Ag(SCN)4 11.2 Agcl4 3- 5.7
① Ag(en)2 is ethylamine salt.
However, due to the high toxicity of cyanide, research has long been seeking less toxic alternatives. In 1939, Weiner initially advocated for cyanide-free silver plating solutions, and since then, many studies on non-cyanide silver plating have been published. Table 2-15 provides some examples of cyanide-free silver plating.
Table 2-15 Partial Results of Cyanide-Free Silver Plating Published So Far
Σύνθεση και οι συνθήκες επεξεργασίας της Συγκέντρωση Σημείωμα

1. Silver sulfate

Ammonia(25%)

Ιωδιούχο κάλιο

Sodium pyrophosphate

Θερμοκρασία διαλύματος επιμετάλλωσης

Πυκνότητα ρεύματος

30g/L

7. 5mL/L

600g/L

60g/L

Θερμοκρασία δωματίου

2A/dm2

2. Silver nitrate

Ιωδιούχο κάλιο

Polyethylene

Polyamine

Θερμοκρασία διαλύματος επιμετάλλωσης

Πυκνότητα ρεύματος

30〜40g/L

300〜400g/L

5〜20g/L

10〜100g/L

Above 40℃

0. 5〜3. 0A/dm2

3.Silver iodide

Polyvinyl alcohol

Θειοθειικό νάτριο

Θερμοκρασία διαλύματος επιμετάλλωσης

Πυκνότητα ρεύματος

40〜80g/L

400〜600g/L

0. 5〜2. 0g/L

Θερμοκρασία δωματίου

0. 5〜3. 0A/dm2

A. Taleat et al. concluded that the coatings obtained from this solution are dendritic in structure and have good resistance to discoloration by H2S

4. Silver Sulfate

Ammonium sulfate

Κιτρικό οξύ

Iron sulfate

Αμμωνία

Temperature of plating solution

pH

40〜80g/L

150g/L

4g/L

0. 4〜3. 0g/L

2〜50mL/L

30℃

10〜10. 6

Both AgNO3 and (NH4)2SO4 were dissolved in half the amount of water, then diluted 3 times and mixed, then Ag2SO4 was dissolved with NH4OH. In addition, citric acid is dissolved using half the amount of water, and then metals and salts are added.

5. Silver nitrate

Sodium pyrophosphate

Αμμωνία

Sodium nitrate

Ammonium sulfate

Temperature of plating solution

Πυκνότητα ρεύματος

20〜30g/L

20〜25g/L

60〜100mL/L

40〜70g/L

40〜70g/L

Θερμοκρασία δωματίου

0. 8〜1. 1 A/dm2

S.R. Natarajan and others precipitated silver as silver chloride, dissolved it in excess sodium thiosulfate, and added potassium metabisulfite. This plating solution can be maintained for several months and under room temperature, and a current density of 0.5~1.25A/cm2, 100% cathodic current efficiency can be obtained. The hardness of the resulting plating film is 60~63kgf/mm2. Although it is slightly softer than the plating obtained from cyanide-containing solutions, it still reaches a usable level as a cyanide-free silver plating solution.

In addition, cyanide-free plating also uses dimethylglyoxime as a complexing agent . This plating solution uses dimethylglyoxime as the complexing agent and sulfite as the conductive salt, with the plating solution being alkaline. The composition of the plating solution and its process conditions are shown in Table 2-16.

Table 2-16 Process Conditions Using Dimethylglyoxime as the Complexing Agent
Συστατικά και οι συνθήκες επεξεργασίας τους Parameters Συστατικά και οι συνθήκες επεξεργασίας τους Parameters

Silver ion concentration

Dimethylglycolide

Sulfite

1〜75g/L

50〜250g/L

1〜10g/L

pH

Θερμοκρασία διαλύματος επιμετάλλωσης

Πυκνότητα ρεύματος

7〜13

30〜90℃

0. 1〜10A/dm2

It is recommended that this be used in the field of silver plating on semiconductor bump pads. This method can produce a fine and smooth plating surface. As a non-cyanide plating solution, it does not require oxygen or air to be bubbled into the plating solution to control silver precipitation. Moreover, the plating solution can be used continuously for a long time.

Suppose the sulfite concentration in this plating solution is too low (below 1g/L). In that case, the grain refinement effect of the plating layer deteriorates, and the inhibition effect on plating nodules also worsens. However, if the sulfite concentration is too high (above 75g/L), the plating solution tends to crystallize and precipitate. This may be related to the weak ability of sulfite to reduce.

This plating solution is suitable for alkaline threshold work, for example, when pH<7, the plating solution tends to become turbid but when pH>13, the plating layer is not bright. Some test results are shown in Table 2-17.

Table 2-17 Test Results of Non-Cyanide Silver Plating Using Dimethyl Ethylene Urea as a Complexing Agent
Σειριακός αριθμός Silver dimethylglycolide (as silver) /(g/L) Dimethylglycolideurea/(g/L) Potassium sulfite/(g/L) pH Surface roughness Ra /μm Εμφάνιση Height difference /μm Brightness

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

0. 8

30

0. 8

80

30

80

50

50

50

50

50

50

50

50

200

200

200

200

200

200

200

200

200

200

250

250

250

250

250

250

250

250

250

200

200

200

200

200

200

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 07

0. 07

3

12

12

3

7. 0

7.0

7. 0

11. 0

11. 0

11. 0

13. 0

13. 0

13. 0

7.0

7.0

7.0

11. 0

11. 0

11. 0

13. 0

13. 0

13. 0

7. 0

7.0

7.0

11. 0

11. 0

11. 0

13. 0

13. 0

13. 0

5. 0

11. 0

11. 0

13. 5

11.0

11. 0

0. 45

0. 33

0. 38

0. 26

0. 16

0. 20

0. 22

0. 20

0. 32

0. 40

0. 35

0. 42

0. 20

0. 13

0. 15

0. 12

0. 20

0. 30

0. 38

0. 36

0. 32

0. 30

0. 18

0. 15

0. 22

0. 18

0. 31

0. 15

1.0

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Tumor plating

Tumor plating

No luster

Ag salt precipitation

With plating tumor

Ag salt precipitation

0.41

0. 37

0. 39

0. 29

0. 26

0. 19

0. 28

0. 32

0. 34

0. 45

0. 30

0. 35

0. 30

0. 13

0. 15

0. 20

0. 30

0. 35

0. 33

0. 33

0. 38

0. 28

0. 19

0. 25

0. 40

0. 32

0. 40

10

8

3

5

0. 8

0. 5

0. 8

1. 0

1. 1

1. 1

1. 3

1. 2

0. 9

0. 7

0. 8

0. 7

1. 1

1.3

1. 2

1. 3

1. 1

0. 9

0. 8

0. 6

0. 7

1. 0

1. 1

1. 0

1. 2

1. 1

0. 8

<0. 2

<0. 2

0. 2

0. 3

——

In the table, the plating solution temperature is 60℃, the current density is 1A/dm2, and the plating thickness are 50μm. Surface roughness Ra was measured using a KLA Profiler P-11, appearance was observed with a metallurgical microscope, and brightness was measured with a GAM brightness meter (digital densitometer Model-144).

Adding 2,2’-bipyridine can achieve a mirror-bright coating for cyanide-free silver plating solutions using hydantoin and its derivatives as complexing agents. The composition of the plating solution and its process conditions are shown in Table 2-18.

Table 2-18 Composition and Process Conditions of Cyanide-Free Bright Silver Plating Solution
Σύνθεση και συνθήκες διεργασίας Νο. 1 Αρ. 2 Αρ. 3

KOH/(g/L)

Sulfamic acid/(g/L)

Complex of 5,5-dimethylhydantoin/(g/L)

Ag(complex of 5,5-dimethylhydantoin)/(g/L)

2,2'-Dipyridine/(g/L)

Nicotinamide/(g/L)

2-Aminopyridine/(g/L)

3-Aminopyridine/(g/L)

Bright current density range/(A/dm2)

60

52.5

60

25

0. 8

-

-

-

5〜20

60

52. 5

60

25

0. 4

4. 0

-

-

0〜12. 5

60

52. 5

60

25

0. 4

-

1.3

-

0〜20

60

52. 5

60

25

0. 4

-

-

0. 8

0〜20

The bright orange is the result of a Hull cell current of 0.5 A and a plating time of 5 min. The addition of bipyridine compounds achieved bright Ag plating. When sulfide is used as a complexing agent for Ag, the complex structure proposed by Tetsuji Nishikawa et al. is as follows:
M—O3S—R1—(S—CH2CH2)n—Σ—Δ2—SO3M

In the formula, n is an integer of 2~4; R1 και Ρ2 can be the same or different, and are alkyl groups of C~ C3 or alkylene groups of C2 ~ C6, M can be hydrogen, alkali metals, alkaline earth metals, or amino groups.

It can be used not only for silver plating but also for plating silver alloy.

Additionally, surfactants can be added to improve the plating layer.

Section V Silver-Plated Alloys

The history of silver-plated alloys is also relatively long, mainly because silver-plated alloys can achieve chemical and mechanical properties that pure silver plating cannot. Although there are many types, including silver-antimony, silver-lead, silver-cadmium, silver-copper, silver-nickel, silver-zinc, silver-cobalt, silver-palladium, silver-platinum, etc.

Among them, silver-copper alloys vary in color depending on the copper content, ranging from white to rose red. Moreover, the plating is non-brittle and has higher wear resistance than pure Ag plating. Silver-lead alloys can be used as friction-reducing coatings for high loads such as high-speed rotation. The silver-cadmium alloy has strong corrosion resistance, making it suitable for resisting seawater corrosion. At the same time, its resistance to sulfur and high-temperature discoloration is higher than that of pure silver plating.

The plating solution for silver alloy plating is also mostly cyanide-based, with silver-antimony alloy being the most commonly used among the alloys. Table 2-19 shows some representative silver alloy plating processes.

Table 2-19 Some Representative Alloy Silver Plating Processes
Alloy Name(Content)/% Hardness (Nuc) Specific resistance/(mΩ/cm) Plating solution composition

Sb

0. 7

-

9. 6

-

-

100

-

164

-

-

1.9

-

11.6

-

Ag:24g/L

Sb:g/L

Na2CO3:25g/L

Tartrate:60g/L

NaOH:3〜5g/L

Bi

1〜2. 6

-

-

-

-

90〜180

-

-

-

-

8〜10.4

-

-

-

Ag:25〜50g/L

Bs:25g/L

K2C4O4H2:35g/L

KOH:25g/L

KCN:20-〜50g/L

Cu

20

60

85

-

-

240

240

340

-

-

7.5

12

22

-

K7Ag(P2O7)2 (counted as Ag) 20g/L

K6CU(P2O7)2 required

K4P2O7 100g/L

20℃、0. 5A/dm2

In the case of this alloy, the hardness of Nucor drops to about 185 after about 26 months at room temperature.

Pb

4

10. 2

-

-

-

180

-

-

-

-

10.5

11.5

-

-

AgCN 0. 33mol/L

NaCN 0. 3mol/L

Lead acetate 0.015mol/L

NaOH 0.018mol/L

Tartrate 0. 21mol/L

Pd

12

60

90

-

-

180

250

320

-

-

10

-

Potassium silver cyanide 12g/L, pH 4.5

Palladium chloride 22g/L 0. 5A/dm2

Potassium acid pyrophosphate 56g/L, Ag955, Pd 5%

Potassium thiocyanate 156g/L(alloy ratio)

Japanese Patent: License No. 57-55699

Tl

9. 5

-

-

-

90

-

-

-

-

-

-

AgCN 32g/L

KCN 25g/L

K2CO3 30g/L

Tl2SO4 6g/L

Ag-Pd alloy coatings were initially used as a measure against tarnishing of Ag, and at the same time, the alloy was used as a contact material for relay switches. Domnikov obtained the relationship between the composition of the Ag-Pd alloy (alloy plating obtained from cyanide plating solution) and the lattice constant (face-centered cubic) (see Table 2-20).
Table 2-20 Ag-Pd Alloy Composition and Lattice Constant
Alloy composition/% Lattice constant/Å Alloy composition/% Lattice constant/Å
Ag Pd Molten alloy Alloy Plating Ag Pd Molten alloy Alloy Plating

100

99

97

95

93

90

-

1

3

5

7

10

4. 077

4. 077

4. 072

4. 070

4. 061

4. 056

4. 077

4. 077

4. 077

4. 071

4. 059

4. 051

88

86

85

80

-

12

14

15

20

100

-

4. 054

4. 053

4. 053

4. 031

3. 882

-

4.054

4. 053

4. 051

4. 020

3. 900

-

One of the authors of this book researched obtaining Pd-Ag alloys from alkaline ammonia plating solutions to achieve Pd80% (atomic ratio) alloy compositions. The basic composition of this plating solution is:

Pd(NH3)4 (ΟΧΙ3)2              0.1mol/L

Ag(NH3)2ΟΧΙ3                    0.01mol/L

Νιου Χάμσαϊρ4ΟΧΙ3                          0.4mol/L

Use ammonia water as a pH adjuster.

The polarization curves of the Pd, Ag and Pd-Ag alloys are shown in Figure 2-5.

Figure 2-5 Polarization curves of Ag, Pd, and alloy Ag-Pd deposition
Figure 2-5 Polarization curves of Ag, Pd, and alloy Ag-Pd deposition
From the figure, it can be seen that the deposition potential of Ag is more positive than that of Pd. In contrast, the deposition potential of Pd occurs under the limiting current density condition of Ag deposition. However, from the perspective of the standard electrode potentials of the metals, the standard electrode potential of Pd (0.915 V, relative to NHE) is 0.11 V more positive than that of Ag (0.799 V, relative to NHE). The difference in the stability constants of the complexes causes the variation in deposition potential observed in this system.

Pd2+ + 4ΝΧ3 → Pd(NH3)42+            β1=6.3×1032

Ag+ + 2ΝΜ3 →Ag(NH3)2+                   β2=2.5×107

From the above equation, it can be seen that the stability constants of their complexes differ greatly. Considering also the ammonia water used for pH adjustment, with a total concentration of 1mol/L, according to the Nernst equation, the equilibrium potentials of Pd and Ag in 25℃(relative to NHE) are -0.08 V and +0.24 V yield a more positive potential for Ag. In the polarization curve of the Ag-Pd alloy, it is observed that Ag deposits first, followed by Pd deposition, and finally, the curve moves along the Pd polarization line.

Effect of plating conditions on alloy deposition: The effect of current density on alloy composition is shown in Figure 2-6. It can be seen from the figure that the Ag content in the coating decreases with increasing current density. When the Pt electrode is rotated, or the plating solution is stirred, the Ag content in the coating increases. This indicates that Ag’s deposition (deposition) is controlled by diffusion of Ag+, consistent with the polarization curves in Figure 2-5.

Figure 2-6 Effect of current density on the composition and current efficiency of Ag-Pd alloy
Figure 2-6 Effect of current density on the composition and current efficiency of Ag-Pd alloy
The appearance of the alloy is also affected by the current density and is related to the Ag content in the coating. When at 0.5A/dm2, the obtained alloy is non-bright. When the current density is above 1.0A/dm2, it changes from semi-bright to bright. When the Ag content (atomic ratio) in the alloy is below 23%, the coating changes from semi-bright to bright. When the Ag content (atomic ratio) in the alloy is above, the precipitation rate of Ag increases, and the Ag’s crystallization also influences the alloy’s morphology. Under diffusion-controlled conditions, the Ag coating’s crystallization tends to become coarser. Current efficiency above 1.0 A/dm2 decreases somewhat but remains above 90%.

The increase in Ag content is caused by the decrease in current density or the increase in diffusion rate due to the increased concentration of Ag ions in the cathode diffusion layer. From the polarization curve in Figure 2-5, the Ag potential is more positive than the Pd potential, which conforms to the deposition of regular alloys. According to Brenner’s definition of regular deposition, metals with more positive standard electrode potentials increase their content in the alloy as the ion concentration in the diffusion layer increases. In this experiment, the actual potential change is determined by the plating solution composition and can be judged by the polarization curve regarding the positivity or negativity of metal ions.

Koichi Yamakawa et al. proposed alloy plating formulas to achieve good coatings over a relatively wide range of alloy compositions. Table 2-21 shows the composition of their plating solution and its process conditions.

Table 2-21 Composition and Process Conditions of Ag-Pd Alloy Plating Solution
Σύνθεση και συνθήκες διεργασίας Νο. 1 Αρ. 2

PdCl2/(g/L)

AgNO3/(g/L)

KBr/(g/L)

KNO2/(g/L)

Sodium saccharin/(g/L)

Boric acid/(g/L)

Sodium naphthalene sulfonate/(g/L)

pH (adjusted by NaOH and HNO3)

Anode

Temperature of plating solution/°C

Πυκνότητα ρεύματος/(A/dm2)

28. 4

15. 3

590. 0

23. 4

0. 5

-

-

6. 0

30% Pd-Ag

50

0.5,1,2,5,10

33

10. 0

590. 0

15. 0

-

50. 0

1. 0

9

Pt

30

0.5,1,2,5,10

Among them, the complexation reaction of metal ions is as follows:

Ag+ + 4Br → AgBr43-

Pd2+ + 4NO22- → Pd(NO2)42-

The electroplating results are shown in Table 2-22.
Table 2-22 Ag-Pd Alloy Coating Results
Current density /(A/dm2) Νο. 1 Αρ. 2
Coating thickness /μm Εμφάνιση Pd/(Ag+ Pd)/% Coating thickness /μm Εμφάνιση Pd/(Ag+ Pd)/%

0. 5

1

2

5

10

10

10

3

3

0. 5

Gray, Semi-Gloss

Gray, Semi-Gloss

Silver Gloss

Silver Gloss

Silver Gloss

25

20

25

30

40

2

2

0. 5

0. 3

0. 1

Gray, Semi-Gloss

Gray, Semi-Gloss

Silver Gloss

Silver Gloss

Silver Gloss

50

30

50

60

70

Its typical polarization curve is shown in Figure 2-7. The precipitation potentials of Ag and Pd are not significantly different, making them suitable for alloy precipitation.
Σχήμα 2-7 Καμπύλες πόλωσης διαλύματος επιμετάλλωσης κράματος Ag-Pd 1--Ρεύμα εναπόθεσης Pd· 2--Ρεύμα εναπόθεσης Ag· 3--Ρεύμα εναπόθεσης κράματος Ag-Pd

Figure 2-7 Polarization curves of Ag-Pd alloy plating solution

1--Pd deposition current; 2--Ag deposition current; 3--Ag-Pd alloy deposition current

Sn-Ag alloy and Sn-Ag-Cu alloy plating are used as a substitute for the Sn-Pb plating solution composition and process conditions, as shown in Table 2-23.
Table 2-23 Sn-Ag and its Sn-Ag-Cu Plating Solution Composition and Process Conditions
Συστατικά και οι συνθήκες επεξεργασίας τους Sn-Ag plating solution Sn-Ag-Cu plating solution

Sulfuric acid/(mL/L)

Tin sulfate/(g/L)

Νιτρικό άργυρο/(g/L)

Thiourea/(g/L)

Polyoxyethylene alkyl ether/(g/L)

Copper sulfate pentahydrate/(g/L)

Cathode current density/(A/dm2 )

Plating solution temperature/°C

Stirring

Deposition speed/(μm/min)

120

36

1. 5

15

2

-

2

20

Ναι

1

120

36

1. 5

15

2

4

2

20

Ναι

1

The coating obtained under the above conditions is dense and smooth.

The composition of the Sn-Ag barrel plating solution and its process conditions are shown in Table 2-24.

Table 2-24 Composition and Process Conditions of Tin-Silver Electroplating Solution
Composition and its process conditions and properties Νο. 1 Αρ. 2 Αρ. 3

Stannous sulfate (as Sn)/(g/L)

Stannous chloride (as Sn)/(g/L)

Sodium gluconate/(g/L)

Gluconic acid/(g/L)

Succinic acid/(g/L)

Sodium pyrophosphate/(g/L)

EDTA-2Na/(g/L)

Silver Acetate(Silver)/(g/L)

Silver nitrate (as silver)/(g/L)

PEG(#3000)/(g/L)

pH

Plating solution temperature/°C

Anode material

Average current density/(A/dm2 )

Plating time/min

Plating thickness/μm

Plating Appearance

Silver content/%

Melting point/°C

Brazing wettability (after plating)

Brazing wettability (after humidification test)

Whisker crystal

12

-

50

-

20

-

-

1. 8

-

1

7. 5

50

Sn plate

0. 1

75

5

White, non-glossy

2. 0

221

Within 1s

Within 2s

Κανένα

-

13

60

-

-

100

-

0. 5

-

1

8. 1

40

Sn plate

0. 1

75

5

White, non-glossy

3. 8

221

Within 1s

Within 2s

Κανένα

-

25

-

96

-

80

50

-

1

1

8. 5

25

Platinized titanium plate

0. 1

75

5

White, non-glossy

3. 3

221

Within 1s

Within 2s

Κανένα

The resulting plating layer has good wettability.

Sn-Ag alloy is an additive for alloy plating, which can achieve a plating layer thickness of over 50μm.

When the Sn-Ag alloy is used on raised pads, the requirement for plating thickness increases. However, plating solutions typically used for thin layers tend to have issues such as uneven surfaces and insufficient adhesion when the plating thickness is increased. These problems can be solved by adding certain additives. The main components of the solution proposed by Yachikawa are:

① Add a cationic surfactant containing alkyl amines, whose molecular structure is H(OCH2CH2)nRN(CH2CH2O)nH.

② Water-soluble amines and their derivatives.

③ Glycerol.

④ Urea compounds or reducing agents (where the role of the reducing agent is to prevent the deposition of iodine at the anode when iodide compounds are present).

The implementation process conditions are shown in Table 2-25.

Table 2-25 Sn-Ag Process Conditions for Raised Pad Plating
Composition, process conditions and properties Νο. 1 Αρ. 2 Αρ. 3 Αρ. 4 Αρ. 5 Αρ. 6 Αρ. 7 Αρ. 8 No. 9

Tin pyrophosphate/(g/L)

Silver pyrophosphate/(g/L)

Potassium pyrophosphate/(g/L)

Polyoxyethylene cetylamine/(g/L)

Dimethylamine/(g/L)

Potassium glycerate/(g/L)

Silver iodide/(g/L)

Potassium iodide/(g/L)

Hypoethyl Urea/(g/L)

Hypoethylenediamine/(g/L)

Υποφωσφορώδες νάτριο/(g/L)

Ammonium polyoxyethylene octadecanoate/(g/L)

Triethanolamine/(g/L)

Thiourea/(g/L)

Hydrazine hydrochloride/(g/L)

Trimethylurea/(g/L)

Dimethylaminoboron/(g/L)

Glycerol/(g/L)

Ammonium dipolyoxyethylene dodecanoate/(g/L)

Hydroxylamine hydrochloride/(g/L)

Ethylenediamine/(g/L)

Glycerol acetate/(g/L)

Calcium glycerate/(g/L)

pH

Plating thickness/μm

Tin content of plating/%

33

2. 5

100

10

20

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

11. 0

57

89. 7

33

2. 5

100

10

20

0. 5

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

11. 0

63

91. 6

33

-

96

10

20

-

1. 3

83

1. 0

-

-

-

-

-

-

-

-

-

-

-

-

-

-

6. 0

63

89. 2

33

-

96

-

-

-

1. 3

83

-

8

2

4

-

-

-

-

-

-

-

-

-

-

-

6. 0

67

91. 4

33

-

96

-

-

-

1. 3

83

-

-

-

10

10

0. 5

2

-

-

-

-

-

-

-

-

6. 0

60

91. 6

33

-

96

6

-

-

1. 3

83

-

-

-

-

-

-

-

0.8

2. 5

0. 8

-

-

-

-

-

6. 0

64

91. 0

33

-

96

-

-

-

1. 3

83

-

-

-

-

-

-

-

0. 8

2. 5

0. 8

8

4

-

-

-

6. 0

61

90. 7

33

-

96

-

-

-

1. 3

83

-

-

-

-

-

0. 8

1. 5

-

-

-

6

-

4

1. 0

-

6. 0

61

88. 7

33

-

96

7

10

-

1. 3

-

-

-

2. 5

-

-

0. 3

-

-

-

-

-

-

-

-

0. 5

6. 0

59

89. 3

The Sn-Ag alloy plating layer obtained above has fine and dense crystallization, and a plating layer of more than 50μm can be obtained is suitable for application on raised pads.

Section VI Troubleshooting of Silver Plating

1. Cyanide Plating Solution (usually for Rack Silver Plating) Bright Silver Plating Defects

There are various causes for silver plating defects. According to experience, the countermeasures are shown in Table 2-26.
Table 2-26 Common Silver Plating Defects and Countermeasures
Fault content Αιτίες Countermeasures
Poor adhesion of the plated layer Pre-plated silver is not completely covered. Passivation of the base or bottom plating layer Check the concentration of silver, potassium cyanide and sodium cyanide in the silver pre-plating solution and the surface activity of the plated parts before plating.
Ag plating is black or has spots on the surface Insufficient concentration of free potassium cyanide or free sodium cyanide in the plating solution. Adjust the concentration of free potassium cyanide and sodium cyanide to standard values.
Ag anode is covered by black skin film Insufficient concentration of free potassium cyanide or free sodium cyanide in the bath. Adjust the concentration of free potassium cyanide and sodium cyanide to standard values.
Hydrogen gas precipitation on the surface of plated parts The concentration of free potassium cyanide or free sodium cyanide is high compared to the concentration of silver ions in the bath. Increase the concentration of silver ions or remove part of the plating solution to reduce the amount of plating solution.
Roughness of the plated layer High current density Reduce the current density to an appropriate value
Spots, protrusions, pockmarks on plated surface Hydrogen adsorption due to impurities in the plating solution. Filtration with activated carbon
Plated layer is not smooth Contamination of the plating solution, high current density, dirty anode bag (anode sludge floating) Filter the bath, clean the anode bag, and clean the bath.
Thickness of plated layer not, anode passivation Excessive surface area of product Increase the anode area by maintaining the proper amount of plated parts.

2. Issues, Causes, and Countermeasures of High-Speed Silver Plating

Due to the high current density during high-speed silver plating and the plating solution being sprayed onto the plated surface at high speed, its issues differ significantly from those of regular silver plating. Table 2-27 summarizes some typical problems of high-speed silver plating and their solutions. However, whether high-speed or normal-speed plating, silver plating is still silver plating, and its fundamental issues (regarding electrochemical problems) do not change.
Table 2-27 Common Problems and Countermeasures of High-Speed Silver Plating
Fault content Αιτίες Countermeasures
Dark and coarse plating Current density is too high, KCN is too low, Ag ion concentration is too low, CO32- concentration is too high, brightener concentration is too low. Confirm and adjust, analyze and adjust free cyanide ion, remove (cool) CO32- , analyze and add
Stepped plating The concentration ratio of brightener and replacement inhibitor is not coordinated, usually due to its high ratio. Analyze and dilute the plating solution.
Blistering Replacement of degreasing agent is required, the pre-plated layer is not satisfactory, the bottom layer is passivated. Confirm and replace the plating solution, replace the pre-plating solution if it is dirty, and confirm the final rinse and plating room.
Spots and uneven luster Insufficient brightener, clogged nozzle, silver in the anode solution, or solid ions in the Pt/Ti anode solution. Analyze and adjust, remove and replace, remove, wash, replace if greenish black, and perform activated carbon filtration.
Εικόνα του Heman
Heman

Εμπειρογνώμονας προϊόντων κοσμήματος --- 12 χρόνια άφθονων εμπειριών

Γεια σου, αγαπητή μου,

Είμαι ο Heman, μπαμπάς και ήρωας δύο φοβερών παιδιών. Χαίρομαι που μοιράζομαι τις εμπειρίες μου στα κοσμήματα ως ειδικός στα προϊόντα κοσμήματος. Από το 2010, έχω εξυπηρετήσει 29 πελάτες από όλο τον κόσμο, όπως η Hiphopbling και η Silverplanet, βοηθώντας και υποστηρίζοντάς τους στον δημιουργικό σχεδιασμό κοσμημάτων, την ανάπτυξη προϊόντων κοσμημάτων και την κατασκευή.

Εάν έχετε οποιεσδήποτε ερωτήσεις σχετικά με το προϊόν κοσμήματος, μη διστάσετε να με καλέσετε ή να μου στείλετε μήνυμα ηλεκτρονικού ταχυδρομείου και ας συζητήσουμε μια κατάλληλη λύση για εσάς, και θα πάρετε δωρεάν δείγματα κοσμήματος για να ελέγξετε τις λεπτομέρειες της χειροτεχνίας και της ποιότητας των κοσμημάτων.

Ας αναπτυχθούμε μαζί!

Αφήστε μια απάντηση

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

Κατηγορίες POSTS

Χρειάζεστε υποστήριξη της παραγωγής κοσμημάτων;

Υποβάλετε την έρευνά σας στην Sobling
202407 heman - Ειδικός σε προϊόντα κοσμημάτων
Heman

Εμπειρογνώμονας προϊόντων κοσμήματος

Γεια σου, αγαπητή μου,

Είμαι ο Heman, μπαμπάς και ήρωας δύο φοβερών παιδιών. Χαίρομαι που μοιράζομαι τις εμπειρίες μου στα κοσμήματα ως ειδικός στα προϊόντα κοσμήματος. Από το 2010, έχω εξυπηρετήσει 29 πελάτες από όλο τον κόσμο, όπως η Hiphopbling και η Silverplanet, βοηθώντας και υποστηρίζοντάς τους στον δημιουργικό σχεδιασμό κοσμημάτων, την ανάπτυξη προϊόντων κοσμημάτων και την κατασκευή.

Εάν έχετε οποιεσδήποτε ερωτήσεις σχετικά με το προϊόν κοσμήματος, μη διστάσετε να με καλέσετε ή να μου στείλετε μήνυμα ηλεκτρονικού ταχυδρομείου και ας συζητήσουμε μια κατάλληλη λύση για εσάς, και θα πάρετε δωρεάν δείγματα κοσμήματος για να ελέγξετε τις λεπτομέρειες της χειροτεχνίας και της ποιότητας των κοσμημάτων.

Ας αναπτυχθούμε μαζί!

Ακολουθήστε με

Γιατί να επιλέξετε την Sobling;

Sobling Team Members κατασκευαστής ασημένιων κοσμημάτων και εργοστάσιο
ΠΙΣΤΟΠΟΙΉΣΕΙΣ

Η Sobling σέβεται τα πρότυπα ποιότητας

Η Sobling συμμορφώνεται με πιστοποιητικά ποιότητας όπως TUV CNAS CTC

Νεότερες δημοσιεύσεις

Εικόνα 6-15 Αγκαλιάστε το διαμάντι της ελπίδας

Ποιες είναι οι απίστευτες αληθινές ιστορίες πίσω από τα πιο διάσημα διαμάντια του κόσμου;

Ανακαλύψτε τις θρυλικές ιστορίες διάσημων διαμαντιών όπως το Koh-i-Noor και το Hope Diamond. Μάθετε για την προέλευσή τους, τους διάσημους ιδιοκτήτες τους, την επανακοπή και τις τοποθετήσεις τους σε στέμματα και κοσμήματα. Απαραίτητες γνώσεις για επαγγελματίες κοσμηματοποιούς και σχεδιαστές που αναζητούν έμπνευση από αυτούς τους εμβληματικούς πολύτιμους λίθους.

Διαβάστε περισσότερα "
Συντήρηση και φροντίδα των πολύτιμων μεταλλικών κοσμημάτων

Πώς να συντηρήσετε και να φροντίσετε τα κοσμήματα από πολύτιμα μέταλλα; Οδηγοί των λόγων, των μεθόδων και της διαδικασίας

Διατηρήστε τα πολύτιμα μεταλλικά κοσμήματά σας στην καλύτερη δυνατή κατάσταση με τον απλό οδηγό φροντίδας μας. Μάθετε πώς να διορθώνετε τις παραμορφώσεις, να αποτρέπετε το σπάσιμο και να αφαιρείτε τον αποχρωματισμό. Απαραίτητος για κοσμηματοπώλες, στούντιο και σχεδιαστές που κατασκευάζουν υψηλής ποιότητας, προσαρμοσμένα κομμάτια. Διατηρήστε την αξία και την ομορφιά των κοσμημάτων με εύκολες συμβουλές.

Διαβάστε περισσότερα "
Σχήμα 3–6 Διάτρηση διαμαντιού με λέιζερ

Πώς να ξεχωρίσετε τα αληθινά διαμάντια από τα ψεύτικα: Ο απόλυτος οδηγός αναγνώρισης

Μάθετε πώς να εντοπίζετε τα πραγματικά διαμάντια. Αυτός ο οδηγός παρουσιάζει βασικές δοκιμές για λάμψη, φωτιά και τη χρήση θερμικού ελεγκτή. Προσδιορίστε τα φυσικά έναντι των συνθετικών διαμαντιών όπως τα HPHT και τα CVD και ξεχωρίστε τα από τα ψεύτικα όπως τα κυβικά ζιρκόνια. Απαραίτητο για τους επαγγελματίες κοσμημάτων να επαληθεύουν την αυθεντικότητά τους.

Διαβάστε περισσότερα "
Εικόνα 6-23 Βαμμένο οπάλιο

Ο απόλυτος οδηγός για βελτιστοποιημένες πέτρες νεφρίτη για κοσμηματοπώλες. 8 κοινές επεξεργασίες βελτιστοποίησης και μέθοδοι αναγνώρισης για πέτρες νεφρίτη

Ανακαλύψτε την αλήθεια πίσω από την ομορφιά του νεφρίτη με τον οδηγό μας. Μάθετε πώς διαφέρουν οι βαθμίδες νεφρίτη Α, Β και C, πώς εντοπίζονται οι βαμμένοι και οι γεμισμένοι πολύτιμοι λίθοι και βεβαιωθείτε ότι διαθέτετε μόνο τους καλύτερους και πιο αυθεντικούς λίθους. Απαραίτητο ανάγνωσμα για κοσμηματοπώλες, σχεδιαστές και λιανοπωλητές που επιδιώκουν να αναβαθμίσουν την τέχνη τους.

Διαβάστε περισσότερα "

Περιπτώσεις: κοσμήματα από το Sobling.jewelry

Η Sobling μετατρέπει τα σκίτσα κοσμημάτων του πελάτη σε τρισδιάστατα αριστουργήματα. Χρησιμοποιώντας το JewelCAD και το Rhinogold, δημιουργούν λεπτομερή σχέδια, κάνουν γρήγορες αναθεωρήσεις και εξασφαλίζουν την ικανοποίηση του πελάτη. Ανακαλύψτε την αποτελεσματική διαδικασία από την ιδέα μέχρι τη δημιουργία με την τεχνογνωσία της Sobling στην τρισδιάστατη μοντελοποίηση.

Διαβάστε περισσότερα "
Κυβικό ζιργκόν πολύχρωμα χρώματα

Μία φορά για να γνωρίζετε όλες τις απαραίτητες γνώσεις για το κυβικό ζιρκόνιο

Αν μόλις γνωρίζετε το Κυβικό Ζιρκόνιο για πρώτη φορά, αυτό το άρθρο θα σας βοηθήσει να μάθετε όλες τις λεπτομέρειες του Κυβικού Ζιρκονίου σε μια φορά.

Διαβάστε περισσότερα "
Βήμα 13 Δημιουργήστε ένα επίπεδο "Right Earring Pendant Color". Συνεχίστε να χρωματίζετε το δεξί κρεμαστό κόσμημα σε σχήμα ιππόκαμπου. Βήμα 14 Δημιουργήστε ένα επίπεδο "Χρώμα μαργαριταριού". Εφαρμόστε το ματζέντα ως βασικό χρώμα των μαργαριταριών. Καθορίστε τις σκιές/φωτισμούς. Ολοκληρώστε ρυθμίζοντας τη συνολική αντίθεση φωτός-σκοταδιού και την ισορροπία χρωμάτων για να ολοκληρώσετε.

Ποιες είναι οι βασικές δεξιότητες για το σχεδιασμό κοσμημάτων: Υλικά, τεχνικές & οπτική παρουσίαση;

Αυτός ο οδηγός είναι ιδανικός για καταστήματα κοσμημάτων, στούντιο, μάρκες, σχεδιαστές και πωλητές. Καλύπτει τον τρόπο σχεδίασης και σχεδιασμού κοσμημάτων χρησιμοποιώντας διαφορετικά υλικά όπως διαμάντια, μαργαριτάρια, νεφρίτη και μέταλλα. Μάθετε βήμα προς βήμα τεχνικές για το σκίτσο, το χρωματισμό και τη δημιουργία τρισδιάστατων όψεων με μολύβια, ακουαρέλες, μαρκαδόρους και ταμπλέτες. Ιδανικό για προσαρμοσμένα κομμάτια και σχέδια διασημοτήτων.

Διαβάστε περισσότερα "
Σχήμα 6-1 Ηλεκτρολυτική στίλβωση

Πώς να κάνετε τα κοσμήματα να λάμπουν: στην κατασκευή κοσμημάτων

Αυτός ο οδηγός διδάσκει πώς να κάνετε κοσμήματα λαμπερά και όμορφα. Μιλάει για τον καθαρισμό και τη διόρθωση των κοσμημάτων πριν τους βάλει μια γυαλιστερή μεταλλική επίστρωση. Καλύπτουμε διάφορους τρόπους για να προσθέσετε χρυσό, ασήμι και άλλα μέταλλα για να κάνετε τα κοσμήματα να φαίνονται φανταχτερά. Είναι ιδανικό για όσους φτιάχνουν ή πωλούν κοσμήματα, όπως καταστήματα, σχεδιαστές και διαδικτυακούς πωλητές. Μάθετε τα κόλπα για να διατηρήσετε τα κοσμήματα να φαίνονται καινούργια και όμορφα!

Διαβάστε περισσότερα "

10% Off !!

Σε όλες τις περιπτώσεις πρώτης τάξης

Εγγραφείτε στο ενημερωτικό μας δελτίο

Εγγραφείτε για να λαμβάνετε τις τελευταίες ενημερώσεις και προσφορές!

Sobling κατασκευαστής κοσμημάτων λάβετε μια προσφορά για το κόσμημά σας
Απόλυτος οδηγός προμηθειών - 10 συμβουλές για να εξοικονομήσετε εκατομμύρια για τις προμήθειές σας από νέους προμηθευτές
Δωρεάν κατέβασμα

Απόλυτος οδηγός της προμήθειας επιχειρηματικών πόρων

10 πολύτιμες συμβουλές μπορούν να σας εξοικονομήσουν εκατομμύρια για την προμήθεια κοσμημάτων από νέους προμηθευτές
Sobling κατασκευαστής κοσμήματος δωρεάν προσαρμογή για τα σχέδια κοσμήματος σας

Εργοστάσιο κοσμήματος, προσαρμογή κοσμήματος,Εργοστάσιο κοσμήματος Moissanite,Κοσμήματα χαλκού από ορείχαλκο,Ημιπολύτιμα κοσμήματα,Κοσμήματα συνθετικών πολύτιμων λίθων,Κοσμήματα μαργαριταριών γλυκού νερού,Κοσμήματα CZ από ασήμι 925,Προσαρμογή ημιπολύτιμων πολύτιμων λίθων,Κοσμήματα συνθετικών πολύτιμων λίθων