Cos'è la placcatura in argento, come si esegue e perché viene utilizzata?

Scopri la placcatura in argento per i gioielli. Questa guida tratta i processi di placcatura, le soluzioni (al cianuro e non), gli sbiancanti e la pre-placcatura per una migliore adesione. Scopri le leghe d'argento come argento-rame e argento-palladio, le loro proprietà e come risolvere i problemi di placcatura più comuni per una finitura perfetta. Essenziale per gioiellieri e designer.

Cos'è la placcatura in argento, come si esegue e perché viene utilizzata?

Silver Plating Guide for Jewelry: Processes, Alloys & Troubleshooting

Introduzione:

This article explains what silver plating is – a process of depositing a layer of silver onto a substrate. It details how it is performed using various methods, from traditional cyanide plating solutions to modern cyanide-free alternatives, covering decorative, industrial, and high-speed plating for components like connectors. The text also explores why it’s used, highlighting its excellent conductivity, reflectivity, and application in silver alloys for enhanced properties. Finally, it provides essential troubleshooting guides for common plating faults, making it a comprehensive resource for understanding both the theory and practice of silver electroplating.

cos'è l'argentatura, come si fa e perché si utilizza
What is Silver Plating, How is it Done, and Why is it Used

Indice dei contenuti

Sezione I Panoramica

Silver (Ag) has an atomic number of 47 in the periodic table, with the element symbol Ag. The symbol originates from the Latin word Argentum (meaning shining thing). Its electrical conductivity, conductance, and visible light reflectivity are the highest among metals. Due to its high light reflectivity, it has traditionally been called white silver. The standard electrode potential of Ag is 0.799 V.

Silver ions have a strong bactericidal effect and are widely used as disinfectants (usually, utensils labeled as treated for sterilization have been processed using silver compounds). Silver has also been applied as a sterilization device in water purifiers in recent years. Some main parameters of silver are shown in Table 2-1.

Table 2-1 Some Main Parameters of Silver
Characteristic Parameters Characteristic Values

Nome dell'elemento, simbolo dell'elemento, numero atomico

Classificazione

Gruppo, periodo

Densità, durezza

Metal monomer color

Massa atomica relativa

Raggio atomico

Covalent bond radius

Chemical valency

Struttura cristallina

punto di fusione

boiling point

Calore di vaporizzazione

Calore di dissoluzione

Capacità termica specifica

Conducibilità

Conducibilità termica

Silver、Ag、47

Metallo di transizione

11.5

10490kg/m3, 2. 5

Bianco argento

107.8682

160pm

153pm

1

Doughnut cube

1234. 93K(961. 78℃)

2435K(2162 ℃)

250. 58kJ/mol

11. 3 kJ/mol

232J/(kg • K)

63X106m • Ω

429W/(m ・ K)

Silver is a precious metal that easily undergoes chemical changes. When sulfur compounds are present in the air (such as automobile exhaust, hydrogen sulfide in hot springs, etc.), forming Ag2S on the surface of the silver turns it black. Since ancient times, silverware has been used as tableware for the ruling class and wealthy families. There is a saying that when silver comes into contact with food containing arsenic, the tableware changes color to warn the user.

The history of silver plating is long, dating back to 1838 when G. R. Elkington and H. Elkington in the UK proposed a silver plating solution containing silver oxide, potassium cyanide, and sodium cyanide in 1838.

In 1913, F. O. Frary published a paper on using silver nitrate as a plating bath. E. B. Saniger conducted comparative studies on silver electroplating from sulfonates, nitrates, borofluorides, and fluorides, reporting that smooth plating deposits could be obtained from borofluoride solutions. In 1933, H. Hickman reported that a rotating electrode could obtain silver deposits from acidic solutions.

Silver plating has been widely used both in decorative fields and in industry. Especially in recent years, the development of silver plating on connectors for electronic and communication devices and substrates for semiconductors and integrated circuits has been rapid. Moreover, silver plating in these applications differs from conventional plating methods, typically using high-speed plating. The plating solution is generally neutral, with silver salts being potassium silver cyanide and organic acids as the main components. The development of plating for functional parts is also advancing rapidly. However, research on silver plating is still less extensive than gold plating. In particular, silver alloy plating solutions have not yet reached a practical usage level. Since the introduction of silver plating solutions, cyanide-based solutions have been predominantly used. Although there have been several improvements, the mainstream has not moved away from cyanides. Representative cyanide plating solution compositions are shown in Table 2-2. Using cyanide silver plating allows good silver coatings to be obtained over a wide range of temperatures and concentrations, and the operation control is relatively easy. Table 2-2 lists two types of plating solutions: potassium cyanide and sodium cyanide. The potassium salt type is mostly used when bright silver plating is required. The reasons are as follows:

① Fast electroplating deposition rate;

②High conductivity of the plating solution, which can ensure better dispersion and coverage capabilities;

③ Wide tolerance range for carbonates;

④ Has a smoothing effect, etc.


However, due to the high content and toxicity of cyanide, a large number of experimental studies on non-cyanide silver plating have been carried out at home and abroad. Although no plating solution comparable to cyanide has been found, some products have already been launched.

Table 2-2 Basic Composition and Process Conditions of Silver Cyanide Plating Solution
Composizione e condizioni di processo N. 1 No. 2 N. 3
Silver cyanide (as silver)/(g/L) 25 〜 33 25 〜 33 36 〜 114
Free potassium cyanide/(g/L) 30 〜 45 45 〜 160
Free sodium cyanide/(g/L) 30 〜 38
Potassium carbonate/(g/L) 30 〜 90 15 〜 75
Sodium carbonate/(g/L) 38 〜 45
Potassium hydroxide/(g/L) 4 〜 30
Densità di corrente/(A/dm2) 0. 5 〜 1. 5 0. 5 〜 1. 5 0. 5 〜 1. 0
Temperatura/°C 20 〜 25 20 〜 25 38 〜 50

Section II Decorative Silver Plating

Decorative silver plating for ornaments and Western tableware must use bright silver plating. Before the development and use of brighteners, silver decorative pieces were plated with a certain thickness of silver layer, then surface polished to achieve brightness. In 1902, Frary obtained experimental results of bright silver layers by adding a small amount of carbon disulfide ( CS2 ) to the plating solution. This marked the beginning of rapid research on silver plating brighteners.

Afterward, Wilson dissolved 28 g of carbon disulfide in 56 g of ether and added it to 1 L of silver plating, shaking the solution daily. Then, after 7~14d, 75 mL was taken from it and added to 100 L of silver plating solution, resulting in a highly bright plating layer.

Parson dissolved 6 g of carbon disulfide and 30 g of potassium cyanide in 1 L of water and, after shaking for 30 hours, took 7 mL and added it to 100 mL of silver plating solution, obtaining a good bright plating layer. The N, S, and O atoms bonded to the carbon atoms in the brightening agent cause the plating layer to become bright. Commonly used brightening agents include carbon disulfide, ketones, and a mixture of Turkish red oil, all stable brightening agents. Glycerol and potassium antimony tartrate can increase the hardness of the silver plating layer, and sodium selenite mixed with other sulfur-containing compounds helps to smooth the plating layer. All brightening agents act as depolarizers, and sulfides act in colloidal form to achieve their effect. Table 2-3 shows the composition of some silver plating brightening agents.

Table 2-3 Various Silver Plating Brighteners
Brightener Name Main Inventors
Carbon disulfide and ketone-based polymer

O. Kardos; US PAT. 2807576(1957)

O. H. A. Lammert;US PAT. 2666738(1954)

Hanson-Von Winkle-Munning;Swiss PAT. 298147(1954)

J. Wernle,Berne;France PAT. 1048094(1953)

Xanthates Sieman, Halskie;German PAT. 731962(1943)
ASK compounds (Acrolein Sulfur Disulfide Yellow Polymer) R. Erdman;Metalloberflache 1,2(1950)
Thiocarbazide H. Schlotter;German PAT. 959775(1957)
Thiocarbazide SEL-REX ( America )
Selenium and antimony compounds

R. Weiner;US PAT. 2777810(1957)

Schering;US PAT. 3215610(1966)

Sb-Bi compounds E. Rank;US PAT. 3219558(1965)
During the bright silver electroplating process, when using the sulfide brighteners described in Table 2-3 as brightening agents, the temperature of the plating solution is a very important control parameter. It is generally kept around 20℃ as much as possible; if the temperature is too high, the brightener will be consumed excessively, increasing costs.

Section III Pre-Plating Silver

Generally, during the electroplating process, because the substrate metal and the silver plating layer tend to undergo a displacement reaction resulting in poor adhesion, pre-plating silver is required. Pre-plating silver is a very important step. Typically, the characteristics of the pre-plating silver solution are very low silver ion concentration and high concentration of free potassium cyanide or free sodium cyanide. At the same time, besides the composition of the plating solution, the plating conditions also significantly impact the adhesion of the silver plating layer. They should be classified and formulated according to the substrate material. Table 2-4 shows the composition and operating conditions of pre-plating silver solutions suitable for various substrates. The silver content must be controlled at low concentration conditions for pre-plating silver, especially for materials with greatly differing ionization tendencies, such as iron-based substrates plated with silver. During the silver plating process, performing a pre-nickel plating treatment before pre-plating silver can improve the adhesion of the silver plating layer. Table 2-5 provides examples of process conditions for pre-nickel plating solutions.
Table 2-4 Composition and Operating Conditions of Pre-plating Silver Solutions
Substrate Materials Composizione e condizioni di processo
Ag plating solution Ag-Cu plating solution
Iron base

Potassium silver cyanide:1.4~2.8g/L

Potassium cyanide:60~150g/L

Temperature:20~25℃

Current density:1.5~2.5A/dm2

Voltage:4~6V

Time:1~2min

Anode: SUS plate

Silver cyanide(in silver):0.8~1.5g/L

Copper cyanide (as copper):6.0~7.5g/L

Potassium cyanide:50~60g/L

Temperature:15~25℃

Current density:0.1~0.2A/dm2

Time:5~10min

Anode:SUS plate

Silver cyanide:1.9g/L

Copper cyanide(in copper):11.3g/L

Potassium cyanide:75g/L

Temperature:15~25°C

Current density:1.5~2.5A/dm2

Anode:4~6V

Time:2~3min

Copper base

Silver cyanide:5.6~8.3g/L

Potassium cyanide:60~90g/L

Temperature:20~35℃

Current density:15A/dm2

Voltage:4~6V

Time:1~2min

Anode:Ni plate

Table 2-5 Composition and Operating Conditions of Pre-Plated Silver Plating Solution
Composizione e condizioni di processo Parametri Composizione e condizioni di processo Parametri
Nickel chloride 240g/L Densità di corrente 15A/dm2
Hydrochloric acid (37% by volume) 120mL/L Tempo 1〜2min
Temperatura 20〜35℃ Anodo Ni plate
From another perspective of pre-silver plating, Blum and Hogaboom, through their study on silver plating of stainless steel cutlery, derived the composition of the pre-silver plating solution for stainless steel cutlery with good adhesion as shown in Table 2-6.
Table 2-6 Pretreatment Plating Solution Composition for Pre-Silver Plating of Brass Castings, Nickel Silver, etc.
Componenti Concentration Componenti Concentration
Mercury Chloride(HgCl2) 7. 5g/L Mercury oxide (HgO) 7. 5g/L
Ammonium chloride (NH4Cl) 4g/L Sodium cyanide 60g/L
Oppure

Section IV Cyanide-Free Silver Plating

Silver plating solutions have been developed primarily based on cyanide from the very beginning. To this day, high-concentration cyanide silver plating solutions are still in use. This is mainly because the stability of their complexes is unmatched by other complexes. Table 2-14 shows the stability constants of some silver complexes.
Table 2-14 Stability Constants of Silver Complexes
Complexes Stabilization constant Complexes Stabilization constant
Ag(CN)2 21.1 Ag(SO3)2 8.4
Ag(CH4N4S)3 13.5 AgBr43- 8.3
AgI43- 13.4 Ag(en)2 7.4
Ag(S2O3)2 12.5 Ag(NH3)2+ 6.5
Ag(SCN)4 11.2 Agcl4 3- 5.7
① Ag(en)2 is ethylamine salt.
However, due to the high toxicity of cyanide, research has long been seeking less toxic alternatives. In 1939, Weiner initially advocated for cyanide-free silver plating solutions, and since then, many studies on non-cyanide silver plating have been published. Table 2-15 provides some examples of cyanide-free silver plating.
Table 2-15 Partial Results of Cyanide-Free Silver Plating Published So Far
Composizione e condizioni di processo Concentration Nota

1. Silver sulfate

Ammoniaca(25%)

Ioduro di potassio

Pirofosfato di sodio

Temperatura della soluzione di placcatura

Densità di corrente

30g/L

7. 5mL/L

600g/L

60g/L

Temperatura ambiente

2A/dm2

2. Nitrato d'argento

Ioduro di potassio

Polietilene

Poliammina

Temperatura della soluzione di placcatura

Densità di corrente

30〜40g/L

300〜400g/L

5〜20g/L

10〜100g/L

Sopra i 40℃

0. 5〜3. 0A/dm2

3.Ioduro di argento

Alcool polivinilico

Tiosolfato di sodio

Temperatura della soluzione di placcatura

Densità di corrente

40〜80g/L

400〜600g/L

0. 5〜2. 0g/L

Temperatura ambiente

0. 5〜3. 0A/dm2

A. Taleat et al. hanno concluso che i rivestimenti ottenuti da questa soluzione hanno una struttura dendritica e una buona resistenza alla decolorazione da H2S

4. Solfato d'argento

Solfato di ammonio

Acido citrico

Solfato di ferro

Ammoniaca

Temperatura della soluzione di placcatura

рH

40〜80g/L

150g/L

4g/L

0. 4〜3. 0g/L

2〜50mL/L

30℃

10〜10. 6

Sia AgNO3 e (NH4)2SO4 sono stati sciolti in metà della quantità di acqua, quindi diluiti 3 volte e mescolati, poi Ag2SO4 è stato sciolto con NH4OH. Inoltre, l'acido citrico viene sciolto utilizzando metà della quantità d'acqua, quindi vengono aggiunti metalli e sali.

5. Nitrato d'argento

Pirofosfato di sodio

Ammoniaca

Nitrato di sodio

Solfato di ammonio

Temperatura della soluzione di placcatura

Densità di corrente

20〜30g/L

20〜25g/L

60〜100mL/L

40〜70g/L

40〜70g/L

Temperatura ambiente

0. 8〜1. 1 A/dm2

S.R. Natarajan e altri hanno precipitato l'argento come cloruro d'argento, lo hanno sciolto in un eccesso di tiosolfato di sodio e hanno aggiunto metabisolfito di potassio. Questa soluzione di placcatura può essere mantenuta per diversi mesi a temperatura ambiente, con una densità di corrente di 0,5~1,25A/cm.2Si può ottenere un'efficienza di corrente catodica di 100%. La durezza del film di placcatura risultante è di 60~63kgf/mm.2. Sebbene sia leggermente più morbida della placcatura ottenuta da soluzioni contenenti cianuro, raggiunge comunque un livello utilizzabile come soluzione di argentatura senza cianuro.

Inoltre, la placcatura senza cianuro utilizza anche la dimetilgliossima come agente complessante. Questa soluzione di placcatura utilizza la dimetilgliossima come agente complessante e il solfito come sale conduttore; la soluzione di placcatura è alcalina. La composizione della soluzione di placcatura e le relative condizioni di processo sono riportate nella Tabella 2-16.

Tabella 2-16 Condizioni di processo che utilizzano la dimetilgliossima come agente complessante
Ingredients and their process conditions Parametri Ingredients and their process conditions Parametri

Silver ion concentration

Dimethylglycolide

Sulfite

1〜75g/L

50〜250g/L

1〜10g/L

pH

Temperatura della soluzione di placcatura

Densità di corrente

7〜13

30〜90℃

0. 1〜10A/dm2

It is recommended that this be used in the field of silver plating on semiconductor bump pads. This method can produce a fine and smooth plating surface. As a non-cyanide plating solution, it does not require oxygen or air to be bubbled into the plating solution to control silver precipitation. Moreover, the plating solution can be used continuously for a long time.

Suppose the sulfite concentration in this plating solution is too low (below 1g/L). In that case, the grain refinement effect of the plating layer deteriorates, and the inhibition effect on plating nodules also worsens. However, if the sulfite concentration is too high (above 75g/L), the plating solution tends to crystallize and precipitate. This may be related to the weak ability of sulfite to reduce.

This plating solution is suitable for alkaline threshold work, for example, when pH<7, the plating solution tends to become turbid but when pH>13, the plating layer is not bright. Some test results are shown in Table 2-17.

Table 2-17 Test Results of Non-Cyanide Silver Plating Using Dimethyl Ethylene Urea as a Complexing Agent
Numero di serie Silver dimethylglycolide (as silver) /(g/L) Dimethylglycolideurea/(g/L) Potassium sulfite/(g/L) pH Surface roughness Ra /μm Aspetto Height difference /μm Brightness

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

1

30

75

0. 8

30

0. 8

80

30

80

50

50

50

50

50

50

50

50

200

200

200

200

200

200

200

200

200

200

250

250

250

250

250

250

250

250

250

200

200

200

200

200

200

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 1

3

10

0. 07

0. 07

3

12

12

3

7. 0

7.0

7. 0

11. 0

11. 0

11. 0

13. 0

13. 0

13. 0

7.0

7.0

7.0

11. 0

11. 0

11. 0

13. 0

13. 0

13. 0

7. 0

7.0

7.0

11. 0

11. 0

11. 0

13. 0

13. 0

13. 0

5. 0

11. 0

11. 0

13. 5

11.0

11. 0

0. 45

0. 33

0. 38

0. 26

0. 16

0. 20

0. 22

0. 20

0. 32

0. 40

0. 35

0. 42

0. 20

0. 13

0. 15

0. 12

0. 20

0. 30

0. 38

0. 36

0. 32

0. 30

0. 18

0. 15

0. 22

0. 18

0. 31

0. 15

1.0

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Favorable

Tumor plating

Tumor plating

No luster

Ag salt precipitation

With plating tumor

Ag salt precipitation

0.41

0. 37

0. 39

0. 29

0. 26

0. 19

0. 28

0. 32

0. 34

0. 45

0. 30

0. 35

0. 30

0. 13

0. 15

0. 20

0. 30

0. 35

0. 33

0. 33

0. 38

0. 28

0. 19

0. 25

0. 40

0. 32

0. 40

10

8

3

5

0. 8

0. 5

0. 8

1. 0

1. 1

1. 1

1. 3

1. 2

0. 9

0. 7

0. 8

0. 7

1. 1

1.3

1. 2

1. 3

1. 1

0. 9

0. 8

0. 6

0. 7

1. 0

1. 1

1. 0

1. 2

1. 1

0. 8

<0. 2

<0. 2

0. 2

0. 3

——

In the table, the plating solution temperature is 60℃, the current density is 1A/dm2, and the plating thickness are 50μm. Surface roughness Ra was measured using a KLA Profiler P-11, appearance was observed with a metallurgical microscope, and brightness was measured with a GAM brightness meter (digital densitometer Model-144).

Adding 2,2’-bipyridine can achieve a mirror-bright coating for cyanide-free silver plating solutions using hydantoin and its derivatives as complexing agents. The composition of the plating solution and its process conditions are shown in Table 2-18.

Table 2-18 Composition and Process Conditions of Cyanide-Free Bright Silver Plating Solution
Composizione e condizioni di processo N. 1 No. 2 N. 3

KOH/(g/L)

Acido solfammico/(g/L)

Complex of 5,5-dimethylhydantoin/(g/L)

Ag(complex of 5,5-dimethylhydantoin)/(g/L)

2,2'-Dipyridine/(g/L)

Nicotinamide/(g/L)

2-Aminopyridine/(g/L)

3-Aminopyridine/(g/L)

Bright current density range/(A/dm2)

60

52.5

60

25

0. 8

-

-

-

5〜20

60

52. 5

60

25

0. 4

4. 0

-

-

0〜12. 5

60

52. 5

60

25

0. 4

-

1.3

-

0〜20

60

52. 5

60

25

0. 4

-

-

0. 8

0〜20

The bright orange is the result of a Hull cell current of 0.5 A and a plating time of 5 min. The addition of bipyridine compounds achieved bright Ag plating. When sulfide is used as a complexing agent for Ag, the complex structure proposed by Tetsuji Nishikawa et al. is as follows:
M—O3S—R1—(S—CH2CH2)n-S-R2-SO3M

Nella formula, n è un intero di 2~4; R1 e R2 possono essere uguali o diversi e sono gruppi alchilici di C~ C3 o gruppi alchilenici di C2 ~ C6M può essere idrogeno, metalli alcalini, metalli alcalino-terrosi o gruppi amminici.

Può essere utilizzato non solo per l'argentatura, ma anche per la placcatura di leghe d'argento.

Inoltre, è possibile aggiungere tensioattivi per migliorare lo strato di placcatura.

Sezione V Leghe placcate in argento

Anche la storia delle leghe argentate è relativamente lunga, soprattutto perché le leghe argentate possono ottenere proprietà chimiche e meccaniche che l'argentatura pura non può ottenere. Anche se ne esistono molti tipi, tra cui argento-antimonio, argento-piombo, argento-cadmio, argento-rame, argento-nichel, argento-zinco, argento-cobalto, argento-palladio, argento-platino, ecc.

Tra queste, le leghe argento-rame variano di colore a seconda del contenuto di rame, dal bianco al rosso rosato. Inoltre, la placcatura non è fragile e presenta una maggiore resistenza all'usura rispetto alla placcatura in Ag puro. Le leghe argento-piombo possono essere utilizzate come rivestimenti per la riduzione dell'attrito in caso di carichi elevati, come la rotazione ad alta velocità. La lega argento-cadmio ha una forte resistenza alla corrosione, che la rende adatta a resistere alla corrosione dell'acqua di mare. Allo stesso tempo, la sua resistenza allo zolfo e alla decolorazione ad alta temperatura è superiore a quella dell'argentatura pura.

Anche la soluzione di placcatura per le leghe d'argento è per lo più a base di cianuro, con la lega argento-antimonio che è la più comunemente usata tra le leghe. La Tabella 2-19 mostra alcuni processi rappresentativi di placcatura delle leghe d'argento.

Tabella 2-19 Alcuni processi rappresentativi di placcatura dell'argento in lega
Nome della lega (contenuto)/% Durezza (Nuc) Resistenza specifica/(mΩ/cm) Composizione della soluzione di placcatura

Sb

0. 7

-

9. 6

-

-

100

-

164

-

-

1.9

-

11.6

-

Ag: 24g/L

Sb: g/L

Na2CO325g/L

Tartrato: 60g/L

NaOH:3〜5g/L

Bi

1〜2. 6

-

-

-

-

90〜180

-

-

-

-

8〜10.4

-

-

-

Ag: 25〜50g/L

Bs: 25g/L

K2C4O4H235g/L

KOH: 25g/L

KCN:20-〜50g/L

Cu

20

60

85

-

-

240

240

340

-

-

7.5

12

22

-

K7Ag(P2O7)2 (contato come Ag) 20g/L

K6CU(P2O7)2 richiesto

K4P2O7 100g/L

20℃、0. 5A/dm2

Nel caso di questa lega, la durezza di Nucor scende a circa 185 dopo circa 26 mesi a temperatura ambiente.

Pb

4

10. 2

-

-

-

180

-

-

-

-

10.5

11.5

-

-

AgCN 0. 33mol/L

NaCN 0. 3mol/L

Acetato di piombo 0,015mol/L

NaOH 0,018mol/L

Tartrato 0. 21mol/L

Pd

12

60

90

-

-

180

250

320

-

-

10

-

Cianuro di potassio e argento 12g/L, pH 4,5

Cloruro di palladio 22g/L 0. 5A/dm2

Pirofosfato acido di potassio 56g/L, Ag955, Pd 5%

Tiocianato di potassio 156g/L (rapporto di lega)

Brevetto giapponese: Licenza n. 57-55699

Tl

9. 5

-

-

-

90

-

-

-

-

-

-

AgCN 32g/L

KCN 25g/L

K2CO3 30g/L

Tl2SO4 6g/L

Ag-Pd alloy coatings were initially used as a measure against tarnishing of Ag, and at the same time, the alloy was used as a contact material for relay switches. Domnikov obtained the relationship between the composition of the Ag-Pd alloy (alloy plating obtained from cyanide plating solution) and the lattice constant (face-centered cubic) (see Table 2-20).
Table 2-20 Ag-Pd Alloy Composition and Lattice Constant
Alloy composition/% Lattice constant/Å Alloy composition/% Lattice constant/Å
Ag Pd Molten alloy Alloy Plating Ag Pd Molten alloy Alloy Plating

100

99

97

95

93

90

-

1

3

5

7

10

4. 077

4. 077

4. 072

4. 070

4. 061

4. 056

4. 077

4. 077

4. 077

4. 071

4. 059

4. 051

88

86

85

80

-

12

14

15

20

100

-

4. 054

4. 053

4. 053

4. 031

3. 882

-

4.054

4. 053

4. 051

4. 020

3. 900

-

One of the authors of this book researched obtaining Pd-Ag alloys from alkaline ammonia plating solutions to achieve Pd80% (atomic ratio) alloy compositions. The basic composition of this plating solution is:

Pd(NH3)4 (NO3)2              0.1mol/L

Ag(NH3)2NO3                    0.01mol/L

NH4NO3                          0.4mol/L

Use ammonia water as a pH adjuster.

The polarization curves of the Pd, Ag and Pd-Ag alloys are shown in Figure 2-5.

Figure 2-5 Polarization curves of Ag, Pd, and alloy Ag-Pd deposition
Figure 2-5 Polarization curves of Ag, Pd, and alloy Ag-Pd deposition
From the figure, it can be seen that the deposition potential of Ag is more positive than that of Pd. In contrast, the deposition potential of Pd occurs under the limiting current density condition of Ag deposition. However, from the perspective of the standard electrode potentials of the metals, the standard electrode potential of Pd (0.915 V, relative to NHE) is 0.11 V more positive than that of Ag (0.799 V, relative to NHE). The difference in the stability constants of the complexes causes the variation in deposition potential observed in this system.

Pd2+ + 4NH3 → Pd(NH3)42+            β1=6.3×1032

Ag+ + 2NH3 →Ag(NH3)2+                   β2=2.5×107

From the above equation, it can be seen that the stability constants of their complexes differ greatly. Considering also the ammonia water used for pH adjustment, with a total concentration of 1mol/L, according to the Nernst equation, the equilibrium potentials of Pd and Ag in 25℃(relative to NHE) are -0.08 V and +0.24 V yield a more positive potential for Ag. In the polarization curve of the Ag-Pd alloy, it is observed that Ag deposits first, followed by Pd deposition, and finally, the curve moves along the Pd polarization line.

Effect of plating conditions on alloy deposition: The effect of current density on alloy composition is shown in Figure 2-6. It can be seen from the figure that the Ag content in the coating decreases with increasing current density. When the Pt electrode is rotated, or the plating solution is stirred, the Ag content in the coating increases. This indicates that Ag’s deposition (deposition) is controlled by diffusion of Ag+, consistent with the polarization curves in Figure 2-5.

Figure 2-6 Effect of current density on the composition and current efficiency of Ag-Pd alloy
Figure 2-6 Effect of current density on the composition and current efficiency of Ag-Pd alloy
The appearance of the alloy is also affected by the current density and is related to the Ag content in the coating. When at 0.5A/dm2, the obtained alloy is non-bright. When the current density is above 1.0A/dm2, it changes from semi-bright to bright. When the Ag content (atomic ratio) in the alloy is below 23%, the coating changes from semi-bright to bright. When the Ag content (atomic ratio) in the alloy is above, the precipitation rate of Ag increases, and the Ag’s crystallization also influences the alloy’s morphology. Under diffusion-controlled conditions, the Ag coating’s crystallization tends to become coarser. Current efficiency above 1.0 A/dm2 decreases somewhat but remains above 90%.

The increase in Ag content is caused by the decrease in current density or the increase in diffusion rate due to the increased concentration of Ag ions in the cathode diffusion layer. From the polarization curve in Figure 2-5, the Ag potential is more positive than the Pd potential, which conforms to the deposition of regular alloys. According to Brenner’s definition of regular deposition, metals with more positive standard electrode potentials increase their content in the alloy as the ion concentration in the diffusion layer increases. In this experiment, the actual potential change is determined by the plating solution composition and can be judged by the polarization curve regarding the positivity or negativity of metal ions.

Koichi Yamakawa et al. proposed alloy plating formulas to achieve good coatings over a relatively wide range of alloy compositions. Table 2-21 shows the composition of their plating solution and its process conditions.

Table 2-21 Composition and Process Conditions of Ag-Pd Alloy Plating Solution
Composizione e condizioni di processo N. 1 No. 2

PdCl2/(g/L)

AgNO3/(g/L)

KBr/(g/L)

KNO2/(g/L)

Sodium saccharin/(g/L)

Boric acid/(g/L)

Sodium naphthalene sulfonate/(g/L)

pH (adjusted by NaOH and HNO3)

Anodo

Temperature of plating solution/°C

Densità di corrente/(A/dm2)

28. 4

15. 3

590. 0

23. 4

0. 5

-

-

6. 0

30% Pd-Ag

50

0.5,1,2,5,10

33

10. 0

590. 0

15. 0

-

50. 0

1. 0

9

Pt

30

0.5,1,2,5,10

Among them, the complexation reaction of metal ions is as follows:

Ag+ + 4Br → AgBr43-

Pd2+ + 4NO22- → Pd(NO2)42-

The electroplating results are shown in Table 2-22.
Table 2-22 Ag-Pd Alloy Coating Results
Densità di corrente /(A/dm2) N. 1 No. 2
Coating thickness /μm Aspetto Pd/(Ag+ Pd)/% Coating thickness /μm Aspetto Pd/(Ag+ Pd)/%

0. 5

1

2

5

10

10

10

3

3

0. 5

Gray, Semi-Gloss

Gray, Semi-Gloss

Silver Gloss

Silver Gloss

Silver Gloss

25

20

25

30

40

2

2

0. 5

0. 3

0. 1

Gray, Semi-Gloss

Gray, Semi-Gloss

Silver Gloss

Silver Gloss

Silver Gloss

50

30

50

60

70

Its typical polarization curve is shown in Figure 2-7. The precipitation potentials of Ag and Pd are not significantly different, making them suitable for alloy precipitation.
Figura 2-7 Curve di polarizzazione della soluzione di placcatura in lega Ag-Pd 1--Corrente di deposizione Pd; 2--Corrente di deposizione Ag; 3--Corrente di deposizione della lega Ag-Pd

Figure 2-7 Polarization curves of Ag-Pd alloy plating solution

1--Pd deposition current; 2--Ag deposition current; 3--Ag-Pd alloy deposition current

Sn-Ag alloy and Sn-Ag-Cu alloy plating are used as a substitute for the Sn-Pb plating solution composition and process conditions, as shown in Table 2-23.
Table 2-23 Sn-Ag and its Sn-Ag-Cu Plating Solution Composition and Process Conditions
Ingredients and their process conditions Sn-Ag plating solution Sn-Ag-Cu plating solution

Sulfuric acid/(mL/L)

Tin sulfate/(g/L)

Silver nitrate/(g/L)

Tiourea/(g/L)

Polyoxyethylene alkyl ether/(g/L)

Copper sulfate pentahydrate/(g/L)

Cathode current density/(A/dm2 )

Plating solution temperature/°C

Agitazione

Deposition speed/(μm/min)

120

36

1. 5

15

2

-

2

20

1

120

36

1. 5

15

2

4

2

20

1

The coating obtained under the above conditions is dense and smooth.

The composition of the Sn-Ag barrel plating solution and its process conditions are shown in Table 2-24.

Table 2-24 Composition and Process Conditions of Tin-Silver Electroplating Solution
Composition and its process conditions and properties N. 1 No. 2 N. 3

Stannous sulfate (as Sn)/(g/L)

Stannous chloride (as Sn)/(g/L)

Sodium gluconate/(g/L)

Gluconic acid/(g/L)

Succinic acid/(g/L)

Sodium pyrophosphate/(g/L)

EDTA-2Na/(g/L)

Silver Acetate(Silver)/(g/L)

Silver nitrate (as silver)/(g/L)

PEG(#3000)/(g/L)

рH

Plating solution temperature/°C

Anode material

Average current density/(A/dm2 )

Plating time/min

Spessore del rivestimento/μm

Plating Appearance

Silver content/%

Punto di fusione/°C

Brazing wettability (after plating)

Brazing wettability (after humidification test)

Whisker crystal

12

-

50

-

20

-

-

1. 8

-

1

7. 5

50

Sn plate

0. 1

75

5

White, non-glossy

2. 0

221

Within 1s

Within 2s

Nessuno

-

13

60

-

-

100

-

0. 5

-

1

8. 1

40

Sn plate

0. 1

75

5

White, non-glossy

3. 8

221

Within 1s

Within 2s

Nessuno

-

25

-

96

-

80

50

-

1

1

8. 5

25

Platinized titanium plate

0. 1

75

5

White, non-glossy

3. 3

221

Within 1s

Within 2s

Nessuno

The resulting plating layer has good wettability.

Sn-Ag alloy is an additive for alloy plating, which can achieve a plating layer thickness of over 50μm.

When the Sn-Ag alloy is used on raised pads, the requirement for plating thickness increases. However, plating solutions typically used for thin layers tend to have issues such as uneven surfaces and insufficient adhesion when the plating thickness is increased. These problems can be solved by adding certain additives. The main components of the solution proposed by Yachikawa are:

① Add a cationic surfactant containing alkyl amines, whose molecular structure is H(OCH2CH2)nRN(CH2CH2O)nH.

② Water-soluble amines and their derivatives.

③ Glycerol.

④ Urea compounds or reducing agents (where the role of the reducing agent is to prevent the deposition of iodine at the anode when iodide compounds are present).

The implementation process conditions are shown in Table 2-25.

Table 2-25 Sn-Ag Process Conditions for Raised Pad Plating
Composition, process conditions and properties N. 1 No. 2 N. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

Tin pyrophosphate/(g/L)

Silver pyrophosphate/(g/L)

Pirofosfato di potassio/(g/L)

Polyoxyethylene cetylamine/(g/L)

Dimethylamine/(g/L)

Potassium glycerate/(g/L)

Silver iodide/(g/L)

Potassium iodide/(g/L)

Hypoethyl Urea/(g/L)

Hypoethylenediamine/(g/L)

Sodium hypophosphite/(g/L)

Ammonium polyoxyethylene octadecanoate/(g/L)

Triethanolamine/(g/L)

Tiourea/(g/L)

Hydrazine hydrochloride/(g/L)

Trimethylurea/(g/L)

Dimethylaminoboron/(g/L)

Glycerol/(g/L)

Ammonium dipolyoxyethylene dodecanoate/(g/L)

Hydroxylamine hydrochloride/(g/L)

Ethylenediamine/(g/L)

Glycerol acetate/(g/L)

Calcium glycerate/(g/L)

рH

Spessore del rivestimento/μm

Tin content of plating/%

33

2. 5

100

10

20

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

11. 0

57

89. 7

33

2. 5

100

10

20

0. 5

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

11. 0

63

91. 6

33

-

96

10

20

-

1. 3

83

1. 0

-

-

-

-

-

-

-

-

-

-

-

-

-

-

6. 0

63

89. 2

33

-

96

-

-

-

1. 3

83

-

8

2

4

-

-

-

-

-

-

-

-

-

-

-

6. 0

67

91. 4

33

-

96

-

-

-

1. 3

83

-

-

-

10

10

0. 5

2

-

-

-

-

-

-

-

-

6. 0

60

91. 6

33

-

96

6

-

-

1. 3

83

-

-

-

-

-

-

-

0.8

2. 5

0. 8

-

-

-

-

-

6. 0

64

91. 0

33

-

96

-

-

-

1. 3

83

-

-

-

-

-

-

-

0. 8

2. 5

0. 8

8

4

-

-

-

6. 0

61

90. 7

33

-

96

-

-

-

1. 3

83

-

-

-

-

-

0. 8

1. 5

-

-

-

6

-

4

1. 0

-

6. 0

61

88. 7

33

-

96

7

10

-

1. 3

-

-

-

2. 5

-

-

0. 3

-

-

-

-

-

-

-

-

0. 5

6. 0

59

89. 3

The Sn-Ag alloy plating layer obtained above has fine and dense crystallization, and a plating layer of more than 50μm can be obtained is suitable for application on raised pads.

Section VI Troubleshooting of Silver Plating

1. Cyanide Plating Solution (usually for Rack Silver Plating) Bright Silver Plating Defects

There are various causes for silver plating defects. According to experience, the countermeasures are shown in Table 2-26.
Table 2-26 Common Silver Plating Defects and Countermeasures
Fault content Cause Countermeasures
Poor adhesion of the plated layer Pre-plated silver is not completely covered. Passivation of the base or bottom plating layer Check the concentration of silver, potassium cyanide and sodium cyanide in the silver pre-plating solution and the surface activity of the plated parts before plating.
Ag plating is black or has spots on the surface Insufficient concentration of free potassium cyanide or free sodium cyanide in the plating solution. Adjust the concentration of free potassium cyanide and sodium cyanide to standard values.
Ag anode is covered by black skin film Insufficient concentration of free potassium cyanide or free sodium cyanide in the bath. Adjust the concentration of free potassium cyanide and sodium cyanide to standard values.
Hydrogen gas precipitation on the surface of plated parts The concentration of free potassium cyanide or free sodium cyanide is high compared to the concentration of silver ions in the bath. Increase the concentration of silver ions or remove part of the plating solution to reduce the amount of plating solution.
Roughness of the plated layer High current density Reduce the current density to an appropriate value
Spots, protrusions, pockmarks on plated surface Hydrogen adsorption due to impurities in the plating solution. Filtration with activated carbon
Plated layer is not smooth Contamination of the plating solution, high current density, dirty anode bag (anode sludge floating) Filter the bath, clean the anode bag, and clean the bath.
Thickness of plated layer not, anode passivation Excessive surface area of product Increase the anode area by maintaining the proper amount of plated parts.

2. Issues, Causes, and Countermeasures of High-Speed Silver Plating

Due to the high current density during high-speed silver plating and the plating solution being sprayed onto the plated surface at high speed, its issues differ significantly from those of regular silver plating. Table 2-27 summarizes some typical problems of high-speed silver plating and their solutions. However, whether high-speed or normal-speed plating, silver plating is still silver plating, and its fundamental issues (regarding electrochemical problems) do not change.
Table 2-27 Common Problems and Countermeasures of High-Speed Silver Plating
Fault content Cause Countermeasures
Dark and coarse plating Current density is too high, KCN is too low, Ag ion concentration is too low, CO32- concentration is too high, brightener concentration is too low. Confirm and adjust, analyze and adjust free cyanide ion, remove (cool) CO32- , analyze and add
Stepped plating The concentration ratio of brightener and replacement inhibitor is not coordinated, usually due to its high ratio. Analyze and dilute the plating solution.
Blistering Replacement of degreasing agent is required, the pre-plated layer is not satisfactory, the bottom layer is passivated. Confirm and replace the plating solution, replace the pre-plating solution if it is dirty, and confirm the final rinse and plating room.
Spots and uneven luster Insufficient brightener, clogged nozzle, silver in the anode solution, or solid ions in the Pt/Ti anode solution. Analyze and adjust, remove and replace, remove, wash, replace if greenish black, and perform activated carbon filtration.
Immagine di Heman
Heman

Esperto di prodotti di gioielleria --- 12 anni di esperienze abbondanti

Ciao Caro,

Sono Heman, papà ed eroe di due fantastici bambini. Sono lieto di condividere le mie esperienze nel campo della gioielleria come esperto di prodotti di gioielleria. Dal 2010 ho servito 29 clienti di tutto il mondo, come Hiphopbling e Silverplanet, assistendoli e supportandoli nella progettazione creativa di gioielli, nello sviluppo di prodotti di gioielleria e nella produzione.

Se avete domande sul prodotto di gioielleria, sentitevi liberi di chiamarmi o di mandarmi un'e-mail e discutiamo una soluzione appropriata per voi, e otterrete campioni gratuiti di gioielli per controllare l'artigianato e i dettagli di qualità dei gioielli.

Cresciamo insieme!

Lascia un commento

Il tuo indirizzo e-mail non sarà pubblicato. I campi obbligatori sono contrassegnati *

Categorie di POSTI

Avete bisogno di supporto per la produzione di gioielli?

Invia la tua richiesta a Sobling
202407 heman - Esperto di prodotti di gioielleria
Heman

Esperto di prodotti di gioielleria

Ciao Caro,

Sono Heman, papà ed eroe di due fantastici bambini. Sono lieto di condividere le mie esperienze nel campo della gioielleria come esperto di prodotti di gioielleria. Dal 2010 ho servito 29 clienti di tutto il mondo, come Hiphopbling e Silverplanet, assistendoli e supportandoli nella progettazione creativa di gioielli, nello sviluppo di prodotti di gioielleria e nella produzione.

Se avete domande sul prodotto di gioielleria, sentitevi liberi di chiamarmi o di mandarmi un'e-mail e discutiamo una soluzione appropriata per voi, e otterrete campioni gratuiti di gioielli per controllare l'artigianato e i dettagli di qualità dei gioielli.

Cresciamo insieme!

Seguitemi

Perché scegliere Sobling?

Sobling Team Members produttore e fabbrica di gioielli in argento
CERTIFICAZIONI

Sobling rispetta gli standard di qualità

Sobling è conforme ai certificati di qualità come TUV CNAS CTC

Messaggi più recenti

Finché si tratta di una tormalina bicolore, molti commercianti la chiamano tormalina anguria.

In cosa si differenziano le gemme artificiali, le gemme assemblate e le gemme ricostruite? Definizioni, metodi di produzione, processi e caratteristiche

Creare gemme false che sembrano vere è ora più facile che mai. Imparate a creare diamanti sintetici, smeraldi e altro ancora utilizzando metodi semplici come la fusione alla fiamma e la crescita idrotermale. Ideale per gioiellieri, designer e per tutti coloro che vendono gioielli di fantasia, sia online che offline.

Continua a leggere "
Figura 5-21 Pressatura del bordo metallico

Come incastonare perfettamente le pietre preziose: Una guida passo a passo per i gioiellieri

Questo articolo è un tesoro per gli appassionati di gioielleria e fornisce tecniche dettagliate per l'incastonatura delle gemme. Dalla preparazione delle gemme al fissaggio dei gioielli con la cera calda, l'articolo tratta di metodi di incastonatura specifici come l'incastonatura a forchetta e a castone. La guida include anche l'uso di strumenti comuni e operazioni passo-passo, aiutando gioiellerie, studi, marchi, rivenditori, designer e venditori di e-commerce e drop shipping a migliorare le loro abilità di creazione di gioielli per creare squisiti gioielli personalizzati.

Continua a leggere "
Figura 2-3-94 Gemme del sistema cristallino avanzato (diamante)

Guida completa alle pietre preziose Caratteristiche dei cristalli: colori, lucentezza, trasparenza, luminescenza, dispersione, meccanica e proprietà fisiche.

Svelate i segreti dei colori delle gemme e dei giochi di luce con la nostra guida. Imparate come si formano i cristalli e le loro proprietà, come la trasparenza e la durezza. Scoprite i consigli per l'identificazione delle gemme e migliorate la vostra conoscenza della gioielleria per la vostra attività o per i vostri progetti personalizzati. Perfetto per gli addetti ai lavori e per chi ama lo scintillio.

Continua a leggere "
Tabella dei colori dell'oro a caratura comune

Cosa rende affascinanti i gioielli: Metalli preziosi e comuni utilizzati per la creazione di gioielli

Quali metalli sono perfetti per i gioielli? Scoprite i segreti dei metalli preziosi come l'oro, l'argento e il platino e imparate a conoscerne le classificazioni e le marcature. Capire perché questi metalli sono preziosi e come i metalli comuni svolgono un ruolo nella creazione di gioielli. Questa guida è essenziale per tutti coloro che operano nel settore della gioielleria e che desiderano padroneggiare la selezione dei metalli.

Continua a leggere "
Bracciale in resina

Perché i gioielli in resina, plastica e acrilico sono così popolari? Materiali, processo produttivo e cura

Imparate a creare gioielli in resina, plastica e acrilico! Questi materiali sono economici ma hanno un aspetto molto bello. La resina è ottima per i lavori colorati, la plastica è resistente e facile da modellare e l'acrilico è trasparente come il vetro. Vi spieghiamo come realizzare e curare questi pezzi di tendenza. Perfetto per gioiellerie, designer e chiunque ami gli accessori unici!

Continua a leggere "
Cera d'api modellata a mano

Come realizzare uno stampo in cera per gioielli? Scoprite i segreti della modellazione a cera per gioielli con la nostra guida facile da seguire

Imparate i trucchi per creare gioielli con la cera! La nostra guida insegna a scegliere la cera giusta, a scolpire disegni dettagliati e a usare la cera morbida per creare forme creative. Inoltre, vi forniamo consigli professionali su come fondere la cera nel metallo per ottenere gioielli belli e duraturi.

Continua a leggere "
come creare gioielli con le perline

Come fare gioielli con le perline? Tecniche di bordatura, dalle basi alle più avanzate, per creatori di gioielli

Imparate le tecniche di base del beading, come l'infilatura, l'annodatura e l'utilizzo di accessori metallici. Questa guida tratta l'infilatura singola e incrociata, i metodi inverso e in avanti, il ritorno delle perline e il punto piatto. Include anche suggerimenti per la realizzazione di cordoncini, cordoncini elastici e rifiniture. Perfetta per le gioiellerie, gli studi, i designer e tutti coloro che realizzano pezzi personalizzati.

Continua a leggere "

10% Off !!!

Su tutti i primi ordini

Iscriviti alla nostra newsletter

Iscriviti per ricevere gli ultimi aggiornamenti e offerte!

Fabbricante di gioielli Sobling, richiedete un preventivo per i vostri gioielli
Guida definitiva all'approvvigionamento - 10 consigli per risparmiare milioni per l'approvvigionamento da nuovi fornitori
Scaricare gratuitamente

Guida definitiva al sourcing aziendale

10 preziosi suggerimenti possono farvi risparmiare milioni per il vostro approvvigionamento di gioielli da nuovi fornitori
Produttore di gioielli Sobling personalizzazione gratuita per i vostri disegni di gioielli

Fabbrica di gioielli, personalizzazione di gioielli, fabbrica di gioielli di Moissanite, gioielli di rame d'ottone, gioielli semi-preziosi, gioielli di gemme sintetiche, gioielli di perle d'acqua dolce, gioielli di CZ dell'argento sterlina, personalizzazione di gemme semi-preziose, gioielli di gemme sintetiche