Bagaimana Cara Melakukan Pemotongan, Pemasangan, dan Pemotongan Batu Permata?

Panduan ini mengajarkan para perajin perhiasan cara membentuk dan memoles batu permata. Panduan ini mencakup pembentukan batu tunggal, produksi massal, pemeriksaan kualitas, dan pilihan peralatan. Sangat cocok untuk toko perhiasan, studio, dan desainer untuk meningkatkan keahlian mereka.

Bagaimana Cara Melakukan Pemotongan, Pemasangan, dan Pemotongan Batu Permata?

Membentuk dan Merekatkan pada batang batu permata dari bahan kasar, Memotong dan Memoles batu permata bersegi

Pendahuluan:

Panduan ini menawarkan pandangan mendalam ke dalam dunia pembentukan batu permata, dengan fokus pada proses penting pembentukan batu kasar, pemasangan batu permata pada batang, dan pemotongan dan pemolesan batu permata. Buku ini wajib dibaca oleh siapa pun di industri perhiasan yang ingin mengasah keterampilan mereka dalam mengubah batu permata mentah menjadi perhiasan yang dipoles. Pelajari cara mencapai presisi dalam pembentukan batu, memastikan kualitas dalam ikatan perekat, dan menguasai seni pemotongan segi untuk hasil akhir yang sempurna.

Gambar 5-11 Struktur mesin pemotong batu permata CNC

Struktur mesin pemotong batu permata CNC

Daftar Isi

Bagian I Pembentukan Batu Kasar Batu Permata

1. Prinsip dan metode pembentukan batu kasar

Membentuk batu permata adalah membentuk ukuran pinggang setelah memotong bahan mentah.

1.1 Prinsip Pembentukan Batu Kasar

Prinsip Pembentukan Batu Permata-Penggilingan bentuk pinggang yang dirancang dan ukuran batu permata pada batu permata kasar. Dalam produksi, batu permata yang telah dipotong kasar digiling untuk mencapai bentuk dan ukuran pinggang yang memenuhi persyaratan desain, seperti yang ditunjukkan pada Gambar 5-1.

Gambar 5-1 Diagram Prinsip Pembentukan Kasar Batu Permata
Gambar 5-1 Diagram Prinsip Pembentukan Kasar Batu Permata
1.2 Metode Pembentukan Kasar Batu Permata
(1) Pembentukan Batu Tunggal

Batu permata alami yang berharga dan batu permata sintetis yang berharga dengan jumlah pesanan kecil menggunakan metode pembentukan partikel tunggal.

 

(2) Pembentukan untuk produksi massal

Batu permata alami dan sintetis biasa menggunakan mesin semi-otomatis untuk metode pembentukan produksi batch.

2. Persyaratan kualitas untuk pembentukan batu permata

2.1 Bentuk pinggang batu permata akurat (Gambar 5-2)
Gambar 5-2 Bentuk Pinggang Permata
Gambar 5-2 Bentuk Pinggang Permata
2.2 Konsistensi Dimensi Produk

Toleransi dimensi untuk blanko batu kasar presisi adalah dalam ± 0,01 mm untuk pemrosesan batu kasar skala besar, seperti yang ditunjukkan pada Gambar 5-3.

Gambar 5-3 Konsistensi Dimensi Batu Kasar
Gambar 5-3 Konsistensi Dimensi Batu Kasar
2.3 Menetapkan Permata Menurut Contoh Cincin (Gambar 5-4)
Gambar 5-4 Mencocokkan batu permata dengan pengaturan cincin
Gambar 5-4 Mencocokkan batu permata dengan pengaturan cincin
2.4 Produksi menurut gambar pesanan (Gambar 5-5)
Gambar 5-5 Produksi batu kasar kosong sesuai dengan gambar pesanan
Gambar 5-5 Produksi batu kasar kosong sesuai dengan gambar pesanan

3. Proses dan Peralatan Pembentukan Kasar Batu Permata Tunggal

Lingkar pinggang batu permata kasar harus dibentuk dan diukur secara akurat melalui penggilingan, yang membutuhkan proses produksi yang wajar, peralatan yang tepat, dan teknik pemrosesan batu permata yang terampil untuk menghasilkan blanko yang dibentuk secara akurat dan memenuhi standar ukuran.

3.1 Mesin universal umum atau mesin permata biasa untuk pembentukan permata tunggal

Proses pembentukan permata tunggal melibatkan pengikatan potongan segitiga dengan batang besi, membentuknya pada peralatan, dan memeriksa kualitas dan dimensi pembentukan.

 

(1) Rekatkan bahan ubin segitiga dengan perekat permata pada batang besi khusus (Gbr. 5-6)
Gambar 5-6 Pengikatan permata kasar pada batang besi
Gambar 5-6 Pengikatan permata kasar pada batang besi

 

(2) Membentuk pada peralatan

Pembentukan pada mesin universal ditunjukkan pada Gambar 5-7, dan pembentukan pada mesin permata biasa ditunjukkan pada Gambar 5-8.

Gambar 5-7 Pembentukan Mesin Universal
Gambar 5-7 Pembentukan Mesin Universal
Gambar 5-8 Pembentukan Mesin Permata
Gambar 5-8 Pembentukan Mesin Permata

 

(3) Periksa dimensi pembentukan (Gambar 5-9)
Gambar 5-9 Inspeksi Jangka Sorong untuk Dimensi Berbentuk
Gambar 5-9 Inspeksi Jangka Sorong untuk Dimensi Berbentuk
3.2 Peralatan dan Struktur Pembentuk Umum untuk Produksi Batu Permata Tunggal

Struktur mesin universal ditunjukkan pada Gambar 5-10, struktur mesin batu permata platform pengangkat CNC ditunjukkan pada Gambar 5-11, dan struktur mesin batu permata biasa ditunjukkan pada Gambar 5-12.

Gambar 5-10 Struktur mesin pemoles permata universal
Gambar 5-10 Struktur mesin pemoles permata universal
Gambar 5-11 Struktur mesin pemotong batu permata CNC
Gambar 5-11 Struktur mesin pemotong batu permata CNC
Gambar 5-12 Struktur Mesin Permata Standar
Gambar 5-12 Struktur Mesin Permata Standar
3.3 Fungsi dan Cakupan Aplikasi Mesin Pemoles Permata Universal

Kekuatan mesin pemoles permata universal disediakan oleh motor 250 W ① yang dipasang pada alasnya, dengan kecepatan 1400r/menit. Motor ① memiliki spindel ② yang dipasang pada porosnya, dan roda gerinda ③ dipasang di ujung depan spindel, yang dapat diganti dengan berbagai alat untuk aplikasi spesifik sebagai berikut.

 

(1) Pembentukan

Ganti dengan roda gerinda yang diperlukan untuk membentuk permata, seperti yang ditunjukkan pada Gambar 5-13.

Gambar 5-13 Roda Gerinda Berbentuk yang Umum Digunakan
Gambar 5-13 Roda Gerinda Berbentuk yang Umum Digunakan

 

(2) Pemolesan

Ganti dengan roda pemoles untuk memoles batu permata, seperti yang ditunjukkan pada Gambar 5-14.

Gambar 5-14 Roda Poles Batu Permata Datar (Cembung)
Gambar 5-14 Roda Poles Batu Permata Datar (Cembung)

 

(3) Ukiran

Beralih ke alat pahat giok untuk mengukir batu permata, seperti yang ditunjukkan pada Gambar 5-15.

Gambar 5-15 Batu permata ukiran kepala gerinda berlian
Gambar 5-15 Batu permata ukiran kepala gerinda berlian

 

(4) Pengeboran

Beralih ke chuck bor dan alat untuk mengebor batu permata, seperti yang ditunjukkan pada Gambar 5-16.

Gambar 5-16 Pengeboran jarum berlian
Gambar 5-16 Pengeboran jarum berlian

 

(5) Mengolah Batu Permata Permukaan Melengkung

Batu permata dengan permukaan melengkung dapat diproses dengan mengubahnya menjadi roda slot, seperti yang ditunjukkan pada Gambar 5-17.

Gambar 5-17 Pemrosesan Batu Permata Permukaan Melengkung
Gambar 5-17 Pemrosesan Batu Permata Permukaan Melengkung

4. Contoh Produksi Kasar Permata yang Umum

4.1 Pengolahan Permata Kasar Permukaan Datar

Batu permata halus (cembung atau melengkung) kasar- Bentuk pinggang batu permata terdiri dari permukaan yang melengkung, seperti bulat, oval, pir, marquise, bentuk hati, dll. Pinggang yang dibentuk oleh permukaan melengkung disebut batu permata permukaan melengkung kasar.

 

(1) Pengolahan batu permata yang halus menjadi kasar

Tempelkan batu kasar yang sudah dipotong ke batang besi menggunakan lem batu permata. Setelah lem mendingin, bentuklah sesuai dengan metode yang ditunjukkan pada Gambar 5-18 untuk batu permata yang halus (melengkung). Keakuratan bentuk dan ukuran batu kasar sangat bergantung pada tingkat keterampilan seseorang.

Gambar 5-18 Pemrosesan batu permata yang halus (melengkung) menjadi kasar
Gambar 5-18 Pemrosesan batu permata yang halus (melengkung) menjadi kasar
Video Pembentukan dan Penyelesaian Batu Permata Cabochon

 

(2) Pengolahan batu permata kasar berbentuk oval (telur)

Tempelkan potongan kasar ke batang besi menggunakan lem batu permata, dan setelah lem mendingin, ikuti operasi pemrosesan untuk batu permata berbentuk oval (telur) seperti yang ditunjukkan pada Gambar 5-19. Tingkat keterampilan seseorang terutama mengontrol bentuk kasar dan akurasi ukuran.

Gambar 5-19 Pemrosesan batu permata kasar berbentuk oval (telur)
Gambar 5-19 Pemrosesan batu permata kasar berbentuk oval (telur)
Video Pembentukan dan Penyelesaian Batu Permata Oval (Berbentuk Telur)
4.2 Proses Pembentukan Kasar Batu Permata Linier

Batu permata bentuk linear yang kasar terdiri dari garis-garis lurus, seperti bentuk zamrud (segi delapan kecil), bujur sangkar, persegi panjang, trapesium, dll. Garis pinggang dari bentuk-bentuk ini disebut batu kasar bentuk batu permata linier.

 

(1) Prinsip Pembentukan Kasar Batu Permata Linier

Komposisi peralatan: Dipasang pada alas adalah motor 180 W dengan kecepatan 2800r/menit (1). Motor (1) memiliki spindel dengan kepala (2) yang dipasang di atasnya, kepala (2) memiliki baki (3) dan cakram gerinda (4) yang terpasang, dan ada bantalan tangan delapan persegi paralel (5) pada mesin. Selama operasi, sumbu tangan delapan persegi (6) harus sejajar dengan meja kerja (9) peralatan untuk memastikan paralelisme batu permata yang kasar. Batu permata kasar (8) direkatkan ke batang besi (7) menggunakan perekat batu permata (Gambar 5-20).

Gambar 5-20 Prinsip Kasar Batu Permata Linier
Gambar 5-20 Prinsip Kasar Batu Permata Linier

1. Motor; 2. Kepala poros; 3. Baki; 4. Cakram pasir; 5. Pengatur jarak; 6. Pegangan delapan persegi; 7. Batang besi; 8. Batu kasar; 9. Meja kerja

 

(2) Pemrosesan pembentukan kasar batu permata potong langkah kristal tunggal

Alur pemrosesan: potong strip - potong bahan segitiga - lem - batang atas - pembentukan mesin batu permata - pembentukan lengkap, seperti yang ditunjukkan pada Gambar 5-21.

Gambar 5-21 Alur pemrosesan pembentukan kasar batu permata kosong
Gambar 5-21 Alur pemrosesan pembentukan kasar batu permata kosong

Operasi pembentukan batu permata dengan mesin CNC ditunjukkan pada Gambar 5-22.

Gambar 5-22 Mesin Batu Permata CNC Langkah Potong Batu Permata Operasi Kasar
Gambar 5-22 Mesin Batu Permata CNC Langkah Potong Batu Permata Operasi Kasar

 

(3) Pemrosesan pembentukan batu permata jenis garis paralel sudut kanan persegi kristal tunggal yang kasar

Masukkan batang besi dengan batu permata kasar ke dalam pemegang segi delapan, sesuaikan sudut meja kerja sehingga pemegang segi delapan sejajar dengan piringan gerinda mesin gerinda, nyalakan sakelar motor, nyalakan sakelar air pendingin (ukuran blanko menentukan besar aliran air), pegang pemegang segi delapan dengan tangan kanan, letakkan pegangan segi delapan di atas meja kerja, dan letakkan batu permata di atas piringan gerinda (Gbr. 5-23).

Gambar 5-23 Proses Penggerindaan Sudut Kanan Persegi
Gambar 5-23 Proses Penggerindaan Sudut Kanan Persegi

 

(4) Proses Penggerindaan Zamrud Tunggal (Bevel Persegi Panjang) (Gambar 5-24)
Gambar 5-24 Proses Penggerindaan Zamrud (Talang Persegi Panjang)
Gambar 5-24 Proses Penggerindaan Zamrud (Talang Persegi Panjang)
Video Pembentukan dan Penyelesaian Batu Permata Potongan Zamrud (Miring Persegi Panjang)
4.3 Proses Pembentukan untuk Batu Permata Kasar Berbentuk Khusus

Selain batu kasar yang disebutkan di atas, jika lubang muncul di bagian tertentu dari batu kasar, itu dianggap sebagai jenis buruk berbentuk khusus. Batu permata berbentuk khusus ini kasar dalam bentuk hati, bentuk bunga plum, bentuk pentagram, dll., memiliki lubang yang diproses berdasarkan bentuk luarnya, dan harus menggunakan mesin pelubang batu untuk membentuknya.

 

(1) Prinsip Pembentukan Batu Permata Kasar Berbentuk Hati (Gambar 5-25)
Gambar 5-25 Pemrosesan Lubang pada Batu Permata Kasar Berbentuk Hati
Gambar 5-25 Pemrosesan Lubang pada Batu Permata Kasar Berbentuk Hati

 

(2) Prinsip Pembentukan Permata Kasar Bunga Plum (Gambar 5-26)
Gambar 5-26 Pemrosesan Permata Kasar Bunga Plum
Gambar 5-26 Pemrosesan Permata Kasar Bunga Plum

 

(3) Prinsip Pembentukan Permata Pentagram Kasar (Gambar 5-27)
Gambar 5-27 Pemrosesan Permata Pentagram Kasar
Gambar 5-27 Pemrosesan Permata Pentagram Kasar

5. Peralatan untuk Produksi Massal Cacat Permata

5.1 Peralatan pembentukan semi-otomatis
(1) Struktur dan prinsip kerja mesin pembentuk semi-otomatis

Membentuk batu permata kasar dalam produksi batch menggunakan peralatan yang ditunjukkan pada Gambar 5-28. Roda gerinda digerakkan oleh sebuah sabuk yang menyalurkan daya ke kepala spindel. Roda gerinda dipasang pada kepala spindel, dan satu set alat pemutar untuk batu kasar juga dipasang pada rangka. Dengan menggerakkan cetakan, berbagai bentuk blanko yang berbeda dapat dihasilkan. Keakuratan bentuk dan ukuran batu kosong ditentukan oleh ketepatan cetakan dan penyetelan roda tangan.

Gambar 5-28 Mesin pembentuk semi-otomatis dan diagram skematik
Gambar 5-28 Mesin pembentuk semi-otomatis dan diagram skematik

1. Motor; 2. Katrol besar; 3. Katrol kecil; 4. Spindel; 5. Roda gerinda berlian; 6. Permata kosong; 7. Pin atas tetap; 8. Pin atas yang dapat digerakkan; 9. Sproket; 10. Motor reduksi; 11. Sproket motor reduksi; 12. Cetakan permata; 13. Batang penyetel cetakan; 14. Roda tangan; 15. Roda gigi; 16. Roda gigi Poros sproket

Working principle of the equipment: Connect the power supply to start the motor (1), which drives the large triangular pulley (2) mounted on the motor (1) shaft, leading to the rotation of the spindle triangular pulley (3) and the diamond grinding wheel mounted at the other end of the spindle. The gemstone mold (12) is installed at one end of the fixed ejector pin (7), while the other end presses against the gemstone rough (6). The other end of the gemstone rough (6) is equipped with a movable ejector pin (8), which tightens the gemstone blank (6) under the action of the handwheel (14). The reduction motor (10) drives three sprockets mounted on the chain shaft (15) to rotate. The sprockets at both ends of the chain shaft (15) drive the movable and fixed ejector pins to rotate, completing the shaping process of the stone. The mold adjustment lever adjusts the size of the stone blank.

The semi-automatic shaping machine can shape round shapes, and by installing various types of profiling shaping wheels, it can process various shapes of gems, glass lenses, etc., with uniform dimensions and high precision. It can also process various irregular pendants, such as heart-shaped, round, oval, leaf-shaped, octagonal, triangular, gourd-shaped, water droplet-shaped, lantern-shaped, etc.

The disadvantage of the semi-automatic shaping machine is that it requires manual blank clamping and then manually lowering the pull rod to complete a process cycle.

5.2 Fully automatic shaping equipment

Fully automatic shaping equipment uses semi-automatic shaping equipment as the main machine, adding automatic clamping and releasing stone rough mechanisms and automatic feeding devices to form fully automatic shaping equipment.

5.3 Special shaping equipment for squares, rectangles, and trapezoids

The trapezoidal artificial gemstone rough mold rapid forming equipment has a simple structure, high precision, can be mass-produced, has a high production capacity, simple operational processes, low production costs, minimal investment, and high returns. Workers can start operating after just one day of training. If a production line is scientifically organized, with 2 people for slicing, 2 for shaping, and 1 for adhesive removal, a total of 5 people can achieve an average daily output of over 10,000 pieces per worker after a familiarization period. It is a processing equipment for trapezoidal gemstone rough molds that is “high output, fast production, good quality, and material-saving.”

The production equipment is shown in Figure 5-29.

Figure 5-29 Schematic of Production Equipment
Figure 5-29 Schematic of Production Equipment

1.Spindle; 2. Aluminum Tray; 3. Diamond Grinding Disc; 4. Workbench Swing Head; 5. Limit Module; 6. Template; 7. Adjustment Screw; 8. Rotating Adjustment Screw; 9. Workbench Adjustment Screw; 10. Workbench; 11. Frame; 12. Motor

6. Examples of Enterprise Gemstone Rough Production Equipment

Mass production of gemstone roughs is commonly used in artificial gemstone production, such as in the cutting and shaping equipment for synthetic cubic zirconia. No standardized devices are on the market; all equipment is designed and manufactured based on the production process. Although some parts of these devices may differ, the principles of operation are the same. The following will illustrate with factory examples.

6.1 Production of Trapezoidal Stone Roughs

The production process of trapezoidal artificial gemstone rough is as follows (Figure 5-30).

  • Clamp the raw materials in a multi-blade cutting machine to slice.
  • Place the sliced materials on a single-blade cutting machine’s workbench to cut into strips.
  • Place the cut strips on the molding machine for shaping.
  • Arrange the qualified strips according to the diagram and bond them with 502 glue.
  • After waiting for the 502 glue to dry, place the bonded block material on the single-blade stone cutting machine to cut it into granules.
  • Clean the 502 glue.
  • Gemstone rough bad vibration polishing.
Figure 5-30 Production process flow of trapezoidal stone rough.
Figure 5-30 Production process flow of trapezoidal stone rough.
6.2 Production of triangular tile

The production process of triangular tile is shown in Figure 5-31.

Figure 5-31 Triangular tile processing round gem production process
Figure 5-31 Triangular tile processing round gem production process
6.3 The production of cylinder blank

The production process of cylinder blank is shown in Figure 5-32.

Figure 5-32 Production process of cylinder blank
Figure 5-32 Production process of cylinder blank
6.4 The production of rounded bead blank

The production process of rounded bead is shown in Figure 5-33.

Figure 5-33 Process Flow for the Production of rounded bead blank
Figure 5-33 Process Flow for the Production of rounded bead blank

7. Cost accounting for gemstone rough production

7.1 Comparison of three commonly used types of rough stone in the market

Triangular tile: slicing – cutting strips – cutting triangular particles – surrounding shape – rough stone

Cylinder blank: slice, cut into strips, grind into round strips, cut into cylindrical particles

Rounded bead blank: slice – cut into strips – cut into cubic particles – chamfer and nest spherical beads

7.2 Comparison of equipment input for two or three types of rough stone (Table 5-1)
Table 5-1 Overview of equipment input comparison for three common types of rough stone
Parison Single cutter slicer Multitool dicing machine Contour Cutting Machine Faceting machine Centerless Round Bar Grinding Machine Multi-blade cutting strip granulator Nesting bead machine
Triangle tile
Cylinder blank
Round bead blank
7.3 Analysis of Production Efficiency for Three Types of Rough Stone

Taking a 2 mm Round Shape as an Example

Triangle Blank 2 People 2000 Pieces/Day 10 hours, average 1000 pieces/person
Cylindrical blank 4 people 100,000 pieces/day 10 hours, average 2500 pieces/person
Cylinder blank 4 people 200,000 pieces/day 10 hours, average 50,000 pieces/person
7.4 The extraction rates and raw material costs of three rough stones

(1) Table of extraction rates per kilogram of raw materials (Table 5-2).

Table 5-2 Extraction rates per kilogram of rough stones
Nama Specification (mm)
1.5 2 2.5 3
Triangle tile 30000 14000 8000 4000
Cylinder blank 16500 7700 4400 2200
Rounded beads blank 15000 7000 4000 2000

(2) The material cost of each stone defect is shown in Table 5-3 (based on the price of lead oxide A + B in Wuzhou, Guangxi, 200 yuan /kg, December 2012).

Table 5-3 Overview of the extraction rate of each rough stone
Nama Specification (mm)
1.5 2 2.5 3
Triangle tile 0.0067 0.0143 0.025 0.05
Cylinder blank 0.012 0.026 0.045 0.091
Rounded beads blank 0.013 0.029 0.05 0.10
7.5 Gemstone rough and size requirements
  • The diameter of the gemstone D must leave a processing allowance for polishing the waistline.
  • The gemstone table must leave a processing allowance for grinding and polishing.
  • The total height of the rough stone must be greater than the total height of the product.
  • The height of the crown above the waistline of the rough stone must be greater than the height of the crown above the waistline of the product (Figure 5-34).
Figure 5-34 Requirements for the processing dimensions of gemstone rough
Figure 5-34 Requirements for the processing dimensions of gemstone rough

Section II Adhesion of gemstone rough materials to the rod

1. Common materials for bonding gemstones roughs to rods

Common ordinary gemstone machines are used for grinding single gemstones in conjunction with octagonal holders or machine tools. Due to the variety of gemstone specifications and shapes, the defective gemstones are bonded to iron rods with gemstone glue before processing. They are then placed into octagonal holders or machine tools to process and grind the gemstones according to operational requirements. After grinding, the gemstones are detached from the iron rods and glue, and any residual glue and oil stains are cleaned.

After the gemstone rough passes the inspection, the stone blank is bonded to a special iron rod before entering the next process. The quality of the gem bonding affects the quality of gem carving, polishing, and processing efficiency.

1.1 Reusable gem adhesive

After the gem processing is completed, the gem is removed from the iron rod. The gem adhesive left on the iron rod can still bond gems, and the scrap of the gem adhesive can also be melted and reused. This type of gem adhesive is called reusable gem adhesive, provided that it does not burn, smoke, or carbonize and loses its performance during heating (Figure 6-1).

Figure 6-1 Reusable gem adhesive
Figure 6-1 Reusable gem adhesive

 

(1) The materials used for gem bonding should meet the following basic requirements.
  • It should have sufficient bonding ability, strength, and hardness and should not break or shift during normal carving and processing.
  • The melting point should not be lower than 70℃ and higher than the temperatures generated during cutting, grinding, and polishing.
  • Repeated use of gemstone adhesive will maintain its performance after multiple heating.
  • It should dissolve well in organic and inorganic solvents but should not be soluble in kerosene and machine oil.
  • It should be inexpensive and not rare.

 

(2) Reusable gemstone adhesive material
  • Shellac (Figure 6-2). 80℃ Softens, 113℃ liquefies, 165℃ begins to release gas vigorously, becoming a loose sponge-like substance, 210℃ carbonizes and loses adhesive ability, the optimal temperature for shellac is 85-105℃, dissolves in alcohol.
  • Rosin (Figure 6-3). Softening temperature 50-70℃, 90-130℃ completely melts, has higher adhesive ability and sufficient strength, and easily dissolves in alcohol, ether, acetone, turpentine, and other solvents.
  • Sealing wax. Composed of low-grade rosin and iron oxide, 100℃ softens around, is harder than shellac and rosin, with higher strength, and is soluble in alcohol, ether, acetone, turpentine, and other solvents.
  • Gem glue powder. Gem glue is crushed into a powder, and gem glue powder is commonly used in automated stone adhesion (Figure 6-4).
Figure 6-2 Shellac

Figure 6-2 Shellac

Figure 6-3 Rosin

Figure 6-3 Rosin

Figure 6-4 Gem glue powder

Figure 6-4 Gem glue powder

 

(3) Principles for Selecting Gem Adhesive Materials

When selecting adhesive materials, considerations should include the shape and size of the workpiece, precision, processing temperature, and heat generated during processing. The greater the force on the workpiece and the smaller the area, the higher the adhesive strength should be selected. Shellac mainly serves an adhesive function, while sealing wax and rosin have adhesive properties and enhance the adhesive material’s mechanical properties. Adhesives with a high proportion of sealing wax are softer and have poor heat resistance, while those with a high proportion of rosin are harder and more brittle.

 

(4) Gem Adhesive Formulation

Formulation requirements: Consider the heat generated during grinding and seasonal variations when formulating.

The formulation is as follows:

  • 95% Sealing wax+5% Shellac.
  • 80% Rosin +20% Shellac.

 

The color of the commercially available gem adhesive is unrelated to its bonding performance and is related to the color of the processed gem. It should be selected in a color that contrasts with the gem color; for example, red gems should use white or green gem glue (Figure 6-5).

Figure 6-5 Market-prepared gemstone adhesive
Figure 6-5 Market-prepared gemstone adhesive
1.2 Disposable gem adhesive

Gem adhesives that cannot be recycled for reuse after the gem processing is completed are called non-recyclable gem adhesives. For example, 502 glue can bond gems well but cannot be recycled for reuse.

Currently, the market produces disposable gem adhesives specifically for gem bonding, including varieties such as quick-drying, light-sensitive, and AB glue. The adhesive is transparent and has strong bonding power, fast bonding speed, and high efficiency. Taking 2 mm gem waste as an example, one person working 8 hours a day can bond over 12,000 pieces, and one kilogram of glue can bond 400,000 to 200,000 pieces of gem waste.

 

(1) Photosensitive adhesive(Figure 6-6)

Bonding method: Insert the iron rod into the special insert board, use the pointed end of the bottle cap to directly apply the adhesive to the tip of the iron rod, and use tweezers to place the gemstone blank on the adhesive-coated tip of the iron rod and level it. Use a UV lamp to irradiate for 1 minute to cure the adhesive before processing. The optimal distance between the UV lamp and the gemstone is 100 mm.

Figure 6-6 Photosensitive adhesive
Figure 6-6 Photosensitive adhesive
 
(2) 502 Glue (Figure 6-7)

Bonding method: Insert the iron rod into the special insert board, use the pointed end of the bottle cap to directly apply the adhesive to the tip of the iron rod, and hold the tweezers in the right hand to place the gemstone blank on the adhesive-coated tip of the iron rod and level it. Please place it in a 25-30℃ environment for 15-20 min to cure the adhesive before processing. An oven should be used if the temperature does not reach 25-30℃.

 

(3) AB Glue (Figure 6-8)

Bonding method: insert the iron rod into the dedicated socket, mix A glue and B glue according to 1:1, directly dip an appropriate amount of AB glue into the head of the iron rod, place the gem on the iron rod head coated with glue, and please leave it in an environment above 25℃ degrees for 5 ~ 8 min to cure. It can be processed after about 15 minutes.

Figure 6-7 502 Glue

Figure 6-7 502 Glue

Figure 6-8 AB Glue

Figure 6-8 AB Glue

2. Common Tools for Gem Bonding

2.1 Alcohol Lamp

(1) The alcohol lamp is used in the reusable gem adhesive process, serving as the heat source for single gem processing. It is commonly used to preheat gems and heat adhesives during single-gem production. After the gem processing is completed, the heated adhesive helps to detach the gem from the iron rod. The alcohol lamp and its structure are shown in Figure 6-9.

Figure 6-9 Alcohol Lamp and Structure
Figure 6-9 Alcohol Lamp and Structure

 

(2) The safe operating procedures for using the alcohol lamp are shown in Figure 6-10.

  • Alcohol is flammable. When adding alcohol to the alcohol lamp, if any spills on the countertop, it must be wiped dry before igniting.
  • The airtightness of the alcohol lamp is poor, and alcohol evaporates easily. For alcohol lamps that have not been used for a long time, the accumulated gas inside the lamp must be released before it can be ignited.
  • The amount of alcohol added must not exceed 2/3 of the alcohol lamp.
  • The alcohol lamp must not be tilted when igniting.
  • When not in use, the alcohol lamp should not be extinguished by blowing it out with the mouth; it should be extinguished with a lamp cover.
Figure 6-10 Safety Operating Procedures for Alcohol Lamps
Figure 6-10 Safety Operating Procedures for Alcohol Lamps
Alcohol Lamp Stone Setting Video
2.2 Horizontal Base (Leveling Device)

Keep the gemstone surface perpendicular to the axis of the iron rod to improve the efficiency and quality of stone adhesion (Figure 6-11).

Figure 6-11 Various Horizontal Bases (Leveling Devices) and Schematic Diagram of Stone Adhesion with Leveling Device
Figure 6-11 Various Horizontal Bases (Leveling Devices) and Schematic Diagram of Stone Adhesion with Leveling Device
2.3 Copper Rod or Iron Rod

For bonding and supporting gemstones, insert the octagonal handle or machine handle to operate and process the gemstones. Copper and iron rods come in various forms, including iron rods with positioning pins, iron rods without positioning pins, and iron rods with a V-shaped groove at the tail, with lengths starting from 30 ~ 90 mm. The heads of the iron rods can be flat or pointed. Iron rods with positioning pins are commonly used for processing round gemstones, while iron rods without positioning pins are often used for processing irregular gemstones (Figure 6-12).

Figure 6-12 Iron rods and enlarged view of iron rods
Figure 6-12 Iron rods and enlarged view of iron rods
2.4 Gem Testing Tools

For reverse stone docking, after the processing of the gemstone crown is completed, remove the iron rod from the handle and place it in the long groove on one side of the docking tool. Take another iron rod coated with adhesive and immediately dock it with the crown of the grinding mark on the docking tool. After the adhesive hardens, use scissors to cut off the unground end of the iron rod from the adhesive, completing the reverse stone process (Figure 6-13). Note: This reverse stone docking tool and method are often used in batch reverse stone processes with disposable adhesive.

Figure 6-13 Reverse Stone Docking Tool
Figure 6-13 Reverse Stone Docking Tool
2.5 Iron Rod Insertion Plate

After bonding the defective gemstones, insert them into the plate holes for storage, facilitating assembly line production, product classification, and quality inspection (Figure 6-14).

Figure 6-14 Iron Rod Insertion Plate
Figure 6-14 Iron Rod Insertion Plate
2.6 Large-scale Production of Gem Adhesives, Gem Testing Tools, and Principles (Figures 6-15, 6-16)
Figure 6-15 Large Batch Gem Adhesive Tools and Schematic
Figure 6-15 Large Batch Gem Adhesive Tools and Schematic
Figure 6-16 Large Batch Gem Testing Tools and Schematic
Figure 6-16 Large Batch Gem Testing Tools and Schematic

3. Quality Analysis of Gem Adhesives and Counterstones

The quality of gemstone adhesion and the quality of the anti-stone affect the quality and efficiency of the next production process.

3.1 Diagrammatic analysis of gemstone adhesion quality (Figures 6-17, 6-18)
Figure 6-17 Diagrammatic analysis of gemstone adhesion quality

Figure 6-17 Diagrammatic analysis of gemstone adhesion quality

Figure 6-18 Actual adhesion image

Figure 6-18 Actual adhesion image

3.2 Analysis of gemstone adhesion quality
  • The adhesive layer should be uniform and smooth. Too much adhesive affects the grinding operation, while too little can cause the adhesive to break during grinding. The amount of adhesive used should be based on the size of the stone.
  • Be sure to preheat the adhesive rod before applying the adhesive; insufficient preheating temperature can easily lead to adhesive failure.
  • Flame adhesive should not cause the adhesive to smoke or catch fire. If the adhesive smokes or catches fire, it will carbonize the adhesive layer and lose its performance. Heat it until it feels slightly fluid.
  • When bonding stone blanks, the design centerline of the gemstone blank should coincide with the centerline of the adhesive rod; otherwise, it may result in skewed tips or oddly shaped gemstones during processing.
  • When bonding stone blanks, the surface of the gemstone blank should be perpendicular to the axis of the adhesive rod.
  • Newly bonded gemstones should not be immediately placed in cold water for cooling, as this can easily cause the gemstones to crack due to sudden cooling.
  • When preheating gemstone roughs, it is essential to ensure even heating; otherwise, thermal cracks may easily occur.
3.3 Common Quality Issues in Gemstone Bonding
  • The Aging of gemstone adhesive – prolonged heating causes it to emit white smoke, indicating that the colloid has aged and the bonding strength has decreased.
  • If the gemstone waste is not cleaned properly and has oil stains or debris, it will also affect the bonding quality.
  • If the gem rough or the adhesive rod is not preheated sufficiently, it is easy for the iron rod and the colloid to become loose or for the gem and the colloid to exhibit false adhesion, leading to deformation and stone loss during processing.
  • When the colloid has not been hardened, it should be placed on a special insert plate to cool and harden; improper operation can easily cause the gem blank and iron rod to be misaligned, thus affecting the quality of the finished product.
3.4 Factory Adhesion and Reverse Stone Examples (Figure 6-19)
Figure 6-19 Factory Adhesion and Reverse Stone Examples
Figure 6-19 Factory Adhesion and Reverse Stone Examples
Manual Stone Setting and Faceting Video
Semi-automatic Stone Setting and Faceting Video
3.5 Fully Automatic Adhesion and Reverse Stone Examples (Figure 6-20)
Figure 6-20 Fully automatic adhesive and back extraction equipment.
Figure 6-20 Fully automatic adhesive and back extraction equipment.
(1) Fully Automatic Stone Adhesive Machine Process Flow
  • Place the stone waste into the mold groove.
  • The gas automatically ignites to heat the iron rod head.
  • The glue powder tray moves to the iron rod head.
  • The iron rod head adsorbs the gem glue powder and melts under heat (Figure 6-21).
Figure 6-21 Aluminum bar structure diagram
Figure 6-21 Aluminum bar structure diagram

 

  • The glue powder tray moves away from the iron rod head.
  • The adhesive gem glue powder iron rod head descends onto the gem blank (Figure 6-22).
  • Wait for the gem colloid to melt on the gem blank to complete the bonding.
Figure 6-22 Schematic of the working principle of the automatic stone adhesive device
Figure 6-22 Schematic of the working principle of the automatic stone adhesive device
(2) Fully automatic anti-stone machine process flow.
  • Place the aluminum strip with the finished crown grinding under the adhesive stone platform [Figure 6-23(a)].
  • Place the empty aluminum strip above.
  • Gas automatic ignition heats the aluminum strip iron rod head.
  • Gem glue powder tray moves to the iron rod head.
  • The iron rod head absorbs gem glue powder and melts under heat.
  • The glue powder disc moves away from the iron rod head.
  • The iron rod head coated with gem glue descends and interfaces with the gem table that has been polished and engraved [Figure 6-23(b)].
  • The upper row blows air to cool the gem glue. After the gem glue solidifies, the lower row of gas is turned on to heat the iron rod head [Figure 6-23(c)].
  • The upper iron rod head rises, completing the anti-stone process.
Figure 6-23 Schematic diagram of the working principle of automatic back extraction equipment
Figure 6-23 Schematic diagram of the working principle of automatic back extraction equipment
Figure 6-24 Schematic diagram of the working principle of automatic stone removal equipment
Figure 6-24 Schematic diagram of the working principle of automatic stone removal equipment

Section III Faceted Gemstone Cutting and Polishing

1. Processing Mechanism of Superhard Materials

The faceting of gemstones is the grinding of uniform, small, flat surfaces based on the roughness of the gemstone. The processing of gemstone materials with a relative hardness above five is considered hard material processing, and the faceting and polishing of gemstones on a grinding disc are essentially grinding.

1.1 Application of surface roughness in gemstone processing

The processing of gemstones involves the abrasive acting on the surface of the gemstone to form peaks and valleys, primarily through a “plowing” effect. The grinding process uses coarse and fine abrasives, and the peaks and valleys formed by coarse abrasives differ from those formed by fine abrasives. This explains why the surface of gemstones processed with coarse abrasives is rough. An enlarged image illustrating the scratches made by a grain of sand on the gemstone surface demonstrates the application of surface roughness in gemstone processing. Figure 7-1 shows the principle of single-grain abrasive grinding, and Figure 7-2 shows the roughness of grinding surfaces with different coarseness of abrasives.

Figure 7-1 Principle of single-grain abrasive grinding
Figure 7-1 Principle of single-grain abrasive grinding

From the analysis of surface roughness, the difference between polishing and grinding lies in the fact that polishing is carried out under the action of finer abrasive particles, and the polishing process is a continuation of the grinding process. The practice has shown that, under fixed parameters such as gemstone material, grinding disc material, abrasive, and equipment speed in gemstone processing, the surface roughness of gemstones depends on the size and shape of the abrasive particles.

Figure 7-2 Roughness of Different Abrasives
Figure 7-2 Roughness of Different Abrasives
1.2 Mechanism of Gem Grinding and Polishing

During the grinding and polishing process of gems, there is a flow phenomenon of molecules on the surface of the grinding and polishing material, and the following phenomena occur during polishing.

  • The polishing powder acts on the gem’s surface in a “plowing” manner, removing working debris the same size as the polishing powder particles.
  • The thermal pressure movement of the polishing powder causes the rearrangement of molecules in the surface layer of the gem, where the elevated temperature plays a crucial role.
  • Auxiliary materials such as water or polishing oil play a chemical role during polishing.

 

Long-term gem processing has proven that mechanical action is the main factor in polishing hard materials, rheological action is weak, and chemical action does not exist in diamond powder hard disk polishing. However, adding some chemical agents in certain gem polishing can increase the polishing speed; for example, adding hydrofluoric acid when polishing synthetic cubic zirconia increases the polishing speed.

2. Grinding Characteristics of Fixed Abrasives and Loose Abrasives

2.1 The Grinding Process of Loose Abrasives

In the gem polishing process, loose abrasives adhere to the polishing disc, and the abrasives press against the gem’s surface. Under the action of the feed force, the abrasive particles are tightly pressed against the workpiece surface. Since the hardness of the abrasive particles is greater than that of the gem, they are compressed and deformed. When the force applied by the abrasive particles exceeds the bonding force between the gem material molecules, a portion of the gem material separates from the gem, referred to as chips. Under pressure and cutting speed, countless small fragments are formed on the workpiece surface through intersecting cuts. With the continuous movement and pressure of the abrasives, these fragments are “excavated” from the gem surface and “pushed away.”

2.2 Applications of Fixed Abrasives and Loose Abrasives in Gem Grinding and Polishing

There is an experiment: a pile of sand and a piece of sandpaper; which one rusts a knife faster? Everyone would say sandpaper because it is fixed friction, while a pile of sand is rolling friction. Polishing gems on a polishing disc also proves this point; practice shows that using a paper towel to wipe the polishing disc converts the rolling friction of the polishing powder pressed into the soft material of the polishing disc into fixed friction, effectively increasing the polishing speed. This illustrates the application of paper towels in gem polishing.

For example, the grinding of gem facets is done on a fixed abrasive grinding disc, where the abrasive particles are fixed to the disc with a binder, grinding the gem. The abrasive particles create a “plowing” effect on the surface of the gem, and as the abrasive particles continuously perform this “plowing” action, cracks, and debris on the gem’s surface fall off, forming a new rough surface. The polishing powder on the polishing disc is a loose abrasive; practice shows that using a paper towel to press the polishing powder into the body of the polishing disc, fixing the polishing powder in the base of the polishing disc in an embedded form creates a fixed friction, resulting in a certain increase in polishing speed and efficiency.

3. Analysis of Gem Processing Efficiency

3.1 The Relationship Between Abrasive Particles and Efficiency

The coarser the abrasive particles, the deeper the indentations and the faster the cutting, resulting in higher grinding efficiency but a rougher surface. Finer abrasive particles lead to slower grinding speeds and a smoother surface finish on the gemstone.

3.2 The relationship between abrasive hardness and efficiency

As the hardness of the abrasive increases, the depth of the resulting indentations also increases. When grinding gemstones, the pressure of the gemstone on the disc must not exceed the compressive strength of the abrasive particles; exceeding this will cause the abrasive particles to break.

As the compressive strength of the abrasive particles increases, the amount of wear on the gemstone increases, and the damage layer deepens accordingly.

3.3 The relationship between disc speed and efficiency

Increasing the spindle speed of the machine tool under the same conditions reduces the surface roughness of the workpiece. The current speed is 3000r/min, and the linear velocity is 20~35 m/s.

3.4 The relationship between grinding wheel material and efficiency

The pressure of the grinding wheel and the speed of the machine tool do not affect the depth of the gem recess layer.

The diameter of the grinding disc is about 300 mm, with high linear speed and significant runout of the grinding wheel.

3.5 The relationship between the concentration of polishing powder and efficiency

Too much polishing powder increases the number of polishing powder particles for polishing gemstones, resulting in lower average pressure on the polishing powder and poor surface smoothness.

3.6 The relationship between the pressure of the polishing disc and efficiency

The pressure of the polishing disc when polishing corundum is 0.2 ~ 0.3kgf/cm2.

The pressure of the polishing disc when polishing agate is 0.15-0.2kgf/cm2.

High grinding disc pressure increases the feed rate, making gemstones prone to cracking (when the applied pressure exceeds the strength of the abrasive particles, causing them to break and become finer).

The grinding disc material is soft, resulting in a small force transmitted to the workpiece, forming a damaged layer with a shallow depth. Therefore, finer grinding and polishing of gemstones should use grinding discs made of softer materials.

  • The pressure of the grinding disc is unrelated to the processing depth, only related to efficiency.
  • The rotation speed of the grinding disc is unrelated to the processing depth, only related to efficiency.

4. Equipment and Tools for Faceted Gemstone Processing

4.1 Equipment for Faceted Gemstone Processing
(1) Dual Ordinary Angle Hand-Cut Faceting Machine (Figure 7-3)
Figure 7-3 Dual Ordinary Octagonal holder-Cut Faceting Machine
Figure 7-3 Dual Ordinary Octagonal holder-Cut Faceting Machine
Standard Gemstone Machine Video

 

(2) CNC Elevating Platform Faceting Machine (Figure 7-4)
Figure 7-4 CNC Elevating Platform Faceting Machine
Figure 7-4 CNC Elevating Platform Faceting Machine

 

(3) Double disk robot faceted jeweler (Figure 7-5)
Figure 7-5 Dual-Disc Mechanical Gem Faceting Machine
Figure 7-5 Dual-Disc Mechanical Gem Faceting Machine
4.2 Tabletop Engraving and Polishing Tools
(1) Pressure Tool

The gem grinding and polishing countertop tools are shown in Figure 7-6, and the operation demonstration of the gem grinding and polishing countertop is shown in Figure 7-7. The working principle of the press is shown in Figure 7-8.

Figure 7-6 The Press
Figure 7-6 The Press
Figure 7-7 Operation demonstration of gem grinding and polishing countertop
Figure 7-7 Operation demonstration of gem grinding and polishing countertop
Figure 7-8 Working principle diagram of the press
Figure 7-8 Working principle diagram of the press
Gemstone Table Processing Video

 

(2) The 45° press

The 45° pressure device is shown in Figure 7-9, and the working principle of the 45° pressure device is shown in Figure 7-10.

Figure 7-9 shows the 45° pressure device.
Figure 7-9 shows the 45° pressure device.
Figure 7-10 shows the working principle of the 45° pressure device.
Figure 7-10 shows the working principle of the 45° pressure device.
4.3 Gem engraving angle adjustment tool
  • Lifting platform with positioning device (Figure 7-11).
  • Lotus flower positioning lift platform (Figure 7-12).
  • Trident rotating positioning lift platform (Figure 7-13).
  • Graduated lift platform (Figure 7-14).
  • Gem CNC lift platform (Figure 7-15).
  • Gem grinding angle measurement tool and schematic (Figure 7-16).
Figure 7-11 Lifting platform with positioning device

Figure 7-11 Lifting platform with positioning device

Figure 7-12 Lotus plate positioning lifting platform

Figure 7-12 Lotus plate positioning lifting platform

Figure 7-13 Trident rotating positioning lifting platform

Figure 7-13 Trident rotating positioning lifting platform

Figure 7-14 Lifting platform with scale

Figure 7-14 Lifting platform with scale

Figure 7-15 Gem CNC lifting platform

Figure 7-15 Gem CNC lifting platform

Figure 7-16 Gem Cutting Angle Measurement Tool and Schematic
Figure 7-16 Gem Cutting Angle Measurement Tool and Schematic
4.4 Gem Cutting Angle Adjustment Tool
(1) Octagonal Holder and Structure (Figure 7-17)
Figure 7-17 Octagonal Holder and Structure
Figure 7-17 Octagonal Holder and Structure
Octagonal Wrench and Robotic Arm Assembly and Disassembly Video

 

(2) Mechanical Holder and Structure (Figure 7-18)
Figure 7-18 Mechanical Holder and Structure
Figure 7-18 Mechanical Holder and Structure
4.5 The Grinding Relationship Between the Mechanical Holder and the Octagonal Holder

The octagonal holder can carve all shapes of gemstones based on 8 (referred to as eight bases), corresponding to the mechanical holder with 64 divisions (8×8). The hexagonal holder can carve gemstones based on 6, corresponding to the mechanical holder with 48 divisions (6×8). The pentagonal holder can carve gemstones based on 5, corresponding to the mechanical holder with 40 divisions (5×8), as shown in Figure 7-19.

Figure 7-19 The Grinding Relationship Between the Mechanical Holder and the Octagonal Holder
Figure 7-19 The Grinding Relationship Between the Mechanical Holder and the Octagonal Holder
4.6 The Grinding Conversion Relationship Between the Mechanical Holder and the Octagonal Holder (Figure 7-20)
Figure 7-20 Relationship between the mechanical arm and the octagonal hand's grinding conversion
Figure 7-20 Relationship between the mechanical arm and the octagonal hand's grinding conversion
4.7 Measurement of gemstone grinding angles and conversion of lift platform height (Figure 7-21, Table 7-1)
Gambar 7-21 Pengukuran Sudut Penggerindaan Batu Permata dan Konversi Ketinggian Platform Pengangkatan
Gambar 7-21 Pengukuran Sudut Penggerindaan Batu Permata dan Konversi Ketinggian Platform Pengangkatan
Table 7-1 Angle and Height Conversion Table
Angle L(° ) Length L( mm)
155 160 165 170 175 180
Height H( cm)
10 145.7 150.6 155.5 160.5 165.4 170.3
15 139.4 144.2 149.0 153.9 158.7 163.5
20 132.0 136.7 141.4 146.1 150.8 155.5
25 123.6 128.1 132.6 137.2 141.7 146.2
30 114.2 118.6 122.9 127.2 131.6 135.9
35 104.0 108.1 112.2 116.3 120.4 124.5
40 93.0 96.9 100.7 104.5 108.3 112.2
45 81.3 84.9 88.4 91.9 95.5 99.0
50 69.0 72.2 75.4 78.6 81.8 85.1
55 56.1 59.0 61.9 64.7 67.6 70.5
60 42.9 45.4 47.9 50.4 52.9 55.4

5. Examples of Gem Carving and Polishing

(1) Standard Round Drill Type (Figure 7-22)
Figure 7-22 Standard round drill type gemstone processing steps diagram
Figure 7-22 Standard round drill type gemstone processing steps diagram
Standard Round Brilliant Pavilion Lapping Video
Standard Round Brilliant Pavilion Polishing Video

 

(2) Marquise shape (Figure 7-23)
Figure 7-23 Processing Steps for Marquise Cut Gemstones
Figure 7-23 Processing Steps for Marquise Cut Gemstones

 

(3) Egg (Oval) Shape (Figure 7-24)
Figure 7-24 Steps for Processing Oval Gemstones
Figure 7-24 Steps for Processing Oval Gemstones
Figure 7-24 Steps for Processing Oval Gemstones

 

(4) Heart Shape (Figure 7-25)
Figure 7-25 Steps for Processing Heart-Shaped Gemstones
Figure 7-25 Steps for Processing Heart-Shaped Gemstones

 

(5) Emerald Cut (Figure 7-26)
Figure 7-26 Steps for Processing Emerald-Shaped Gemstones
Figure 7-26 Steps for Processing Emerald-Shaped Gemstones

 

(6) Princess Cut Square (Figure 7-27)
Figure 7-27 Steps for Processing Princess Cut Gemstones
Figure 7-27 Steps for Processing Princess Cut Gemstones

 

(7) Pear (Water Drop) Shape (Figure 7-28)
Figure 7-28 Steps for Processing Pear-Shaped Gemstones
Figure 7-28 Steps for Processing Pear-Shaped Gemstones

6. Auxiliary Materials in Gemstone Processing

(1) The Role of Water in Gemstone Processing
  • When cutting and grinding gemstones, sufficient moisture is needed to cool the gemstones to prevent overheating of the gem rough material, which can cause cracks.
  • When cutting and grinding gemstones, sufficient moisture is needed to cool the gemstones to prevent overheating of the gem rough material, which can lead to colloidal softening.
  • Wash away the powder left during the cutting and grinding.

 

(2) The Role of Sandpaper in Gemstone Processing
  • Press the polishing powder into the base of the disc.
  • Repair the disc.
  • Balance the powder in the disc.
  • Scrape off the excess polishing powder and residues from polishing.

 

(3) The role of polishing oil in gemstone processing.
  • Polishing powder for blending.
  • Acts as a lubricant to protect the polishing pad.
  • Ensures the polishing powder is evenly distributed on the pad.

 

(4) The role of toilet paper in gemstone polishing.
  • Wipe off the excess oil from the polishing pad.
  • Erase the polishing powder floating on the surface of the polishing disc.
  • Press the polishing powder inside the polishing disc body to become fixed friction polishing.

7. The Engraving and Grinding of Millennium Gemstones

The Millennium gemstone style, also known as the concave gemstone style, is a processing method that extends from the faceted gemstone processing method. The difference between the two is that the processing of faceted gemstones uses a flat grinding disc containing diamond powder, and polishing is done with a zinc alloy hard polishing rod combined with diamond powder, resulting in a series of concave arc-shaped small surfaces.

The Millennium gemstone style processes a series of arc-shaped small surfaces that can gather and reflect light, making the light and fire color reflected from the gemstone’s interior stronger than faceted gemstones. When the gemstone is rotated, it sparkles and shines brilliantly, making it appealing and becoming today’s most popular gemstone style.

7.1 Millennium Gemstone Processing Equipment (Figure 7-29)
Figure 7-29 Millennium Gemstone Processing Equipment
Figure 7-29 Millennium Gemstone Processing Equipment
7.2 Millennium Gemstone Processing Technology
(1) Cutting and Shaping

According to production requirements, a cutting machine is first used to cut out triangular materials and then shape them on a semi-automatic circular machine to produce rough materials of the required size.

 

(2) Adhesive Stone

Place the gemstone adhesive rod coated with gemstone adhesive under a Bunsen burner to heat it, allowing the gemstone adhesive to bake, melt, and soften. Then, attach the gemstone rough material to the adhesive rod. The size of the adhesive on the rod can be determined based on the size of the gemstone style; for larger gemstones, use a larger adhesive; for smaller gemstone rough materials, use a smaller adhesive.

After the gemstone is attached to the adhesive rod, check for any misalignment, whether the gemstone’s center line coincides with the adhesive rod’s center line or if there is too much adhesive. If any issues arise, they should be corrected promptly.

 

(3) Gemstone Carving and Polishing

After the gemstone is mounted on the rod, could you insert it into the robotic arm? To speed up the carving efficiency of the finished product, a standard gemstone machine is used to process the flat surface with a 320 # grinding disc according to the carving pattern of the round drill-shaped crown. Install an 800 # diamond powder stick on the drill chuck of the concave machine, start the main machine and micro motor, and carve out small concave arc surfaces according to the circular carving pattern on the concave machine. During processing, be sure to use a sponge soaked in water for cooling to prevent the gemstone from cracking due to heat during processing.

After completing the grinding process: replace it with a zinc alloy polishing rod, use diamond polishing powder and repeat the grinding process to complete the crown polishing.

After the grinding and polishing of the gemstone crown are completed, the gemstone can be removed from the adhesive rod, reversed, and reattached to the adhesive rod for the grinding and polishing of the pavilion.

7.3 Key technical issues in the processing equipment for millennium gemstones

Millennium Worker gemstone style processing in the process requires skilled skills, but also in the performance requirements of the equipment is also high, the key technical issues are the following points.

  • The processing motor uses a two-speed system, employing different speeds for different sizes of gemstones. A low speed is used for small gemstones, while a high speed is used for large gemstones, with the motor speed controlled for optimal performance between 5000~6000r/min. At this speed, the polished gemstones have good brightness and high efficiency.
  • The speed of the micromotor is controlled at 20 revolutions per minute to ensure the precision and efficiency of engraving and polishing. The micro motor mainly drives the micro workbench in a reciprocating motion; if the speed is too fast, it will cause significant bouncing of the micro workbench, affecting the precision of engraving and polishing while being too slow will impact work efficiency.
  • When engraving gemstones, they must be placed in the fixture, which keeps the gemstones aligned with the axis of the round rod, ensuring uniform size of the engraved facets. Because the diameter of the round rod is small, any displacement will decrease the precision of the concave facets, leading to uneven sizes of the engraved facets.
  • The centerline of the micro workbench’s movement must be parallel to the centerline of the spindle; otherwise, the concave facets produced will appear skewed or deformed.

 

If the processing methods for millennium-style gemstones differ, various millennium styles will emerge; some have both the crown and pavilion processed as curved surfaces, while others have the crown processed with small flat facets and the pavilion as a curved surface. The styles are ever-changing, such as star-shaped, radiating, chrysanthemum-shaped, spiral, etc., appearing both fashionable and profound, combined with the gemstones’ dazzling brilliance, making them very popular among consumers.

8. Factory Production Examples

(1) Single Gemstone Addition
CNC  Single Gemstone Processing Video

 

(2) Mechanical Single Gemstone Automatic Addition
Manual Single Gemstone Processing Video in a Factory

 

(3) CNC fully automatic multi-grain gemstone processing
Fully Automated Gemstone Processing Video
Gambar Heman
Heman

Pakar Produk Perhiasan --- Pengalaman berlimpah selama 12 tahun

Hai sayang,

Saya Heman, ayah dan pahlawan bagi dua anak yang luar biasa. Saya senang berbagi pengalaman perhiasan saya sebagai seorang ahli produk perhiasan. Sejak tahun 2010, saya telah melayani 29 klien dari seluruh dunia, seperti Hiphopbling dan Silverplanet, membantu dan mendukung mereka dalam desain perhiasan yang kreatif, pengembangan dan pembuatan produk perhiasan.

Jika Anda memiliki pertanyaan tentang produk perhiasan, jangan ragu untuk menelepon atau mengirim email kepada saya dan mari kita diskusikan solusi yang tepat untuk Anda, dan Anda akan mendapatkan sampel perhiasan gratis untuk memeriksa detail pengerjaan dan kualitas perhiasan.

Mari tumbuh bersama!

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Kategori Kiriman

Butuh Dukungan Produksi Perhiasan?

Kirimkan Pertanyaan Anda ke Sobling
202407 heman - Ahli produk perhiasan
Heman

Pakar Produk Perhiasan

Hai sayang,

Saya Heman, ayah dan pahlawan bagi dua anak yang luar biasa. Saya senang berbagi pengalaman perhiasan saya sebagai seorang ahli produk perhiasan. Sejak tahun 2010, saya telah melayani 29 klien dari seluruh dunia, seperti Hiphopbling dan Silverplanet, membantu dan mendukung mereka dalam desain perhiasan yang kreatif, pengembangan dan pembuatan produk perhiasan.

Jika Anda memiliki pertanyaan tentang produk perhiasan, jangan ragu untuk menelepon atau mengirim email kepada saya dan mari kita diskusikan solusi yang tepat untuk Anda, dan Anda akan mendapatkan sampel perhiasan gratis untuk memeriksa detail pengerjaan dan kualitas perhiasan.

Mari tumbuh bersama!

Ikuti aku.

Mengapa Memilih Sobling?

Anggota Tim Sobling Produsen dan pabrik perhiasan perak
SERTIFIKASI

Menghormati Standar Kualitas dengan Tenang

Sobling mematuhi sertifikat Kualitas sebagai TUV CNAS CTC

Posting terbaru

9999 Emas murni

Pengenalan bahan emas murni yang digunakan dalam pembuatan perhiasan

Perhiasan emas adalah tentang kemurnian, kekuatan, dan gaya. Panduan kami menunjukkan cara membuat perhiasan emas dengan tingkat kemurnian tinggi, tahan lama, dan ringan menggunakan teknik modern. Buku ini wajib dibaca oleh siapa pun yang berkecimpung dalam bisnis perhiasan dan ingin menciptakan kreasi emas berkualitas tinggi yang memukau.

Baca Selengkapnya "
Gambar 5-2-3 Opal api

Batu Permata Amorf: Memahami Definisi, Sifat Optik dan Mekanika

Ringkasan: Selami dunia permata amorf seperti opal, permainan warnanya yang unik, dan bagaimana mereka terbentuk. Dapatkan wawasan tentang jenis, sifat, dan mengapa permata ini sangat cocok untuk perhiasan yang dipesan lebih dahulu, yang sangat berharga bagi semua orang dalam perdagangan permata dan perhiasan.

Baca Selengkapnya "
moissanite jewelry care tips

Apa Saja Sifat Utama dan Metode Perawatan Bahan Perhiasan Populer?

Learn how to care for gold, silver, platinum, diamonds, jadeite, ruby, sapphire, pearls, and amber. Discover cleaning methods, proper storage to avoid scratches and oxidation, and tips to maintain brilliance. Essential knowledge for jewelry sellers, designers, and retailers to protect your products’ value and beauty.

Baca Selengkapnya "
Anting-anting yang umum digunakan adalah anting-anting giwang, anting-anting tetes, anting-anting simpai, dan anting-anting jepit dengan berbagai bentuk dan bahan. Selain anting-anting khas yang terbuat dari batu permata dan hias emas atau perak, anting-anting yang terbuat dari bahan seperti plastik, marmer, keramik, dan kain, juga sangat populer. Berikutnya, kami akan memperkenalkan bahan, ukuran, kualitas, serta gaya dan bentuk anting yang umum.

Apa yang Perlu Anda Ketahui Tentang Perhiasan: Konsep, Jenis, Perawatan, Tren, dan Desain?

Panduan komprehensif ini mencakup semua hal yang perlu diketahui oleh para profesional perhiasan: jenis-jenis (anting-anting, kalung, cincin, gelang, bros), dasar-dasar batu permata (berlian, ruby, safir, zamrud, dan lain-lain), kiat-kiat perawatan perhiasan, tabel ukuran, tren desain terkini, dan cara membedakan batu permata alami dan sintetis.

Buku ini menjelaskan cara mencocokkan perhiasan dengan berbagai bentuk wajah, tipe tubuh, dan gaya pakaian, menawarkan metode perawatan untuk berbagai bahan, dan menunjukkan mengapa perhiasan kustomisasi dan perhiasan logam campuran sedang berkembang pesat.

Baca Selengkapnya "
Cincin baja tahan karat

Apa yang Membuat Baja Tahan Karat dan Paduan Titanium Ideal untuk Perhiasan? Wawasan Produksi dan Tren Pasar

Artikel ini menguraikan proses produksi perhiasan baja tahan karat dan titanium, termasuk pembentukan mekanis dan pengecoran investasi. Artikel ini mengeksplorasi fitur, tren pasar, dan jenis umum dari bahan-bahan ini, yang menawarkan informasi praktis untuk toko perhiasan, studio, merek, peritel, perancang, dan penjual online.

Baca Selengkapnya "
Gambar 8-30 Pembulatan ring shank (menurut Klotz F, 2003)

Panduan komprehensif untuk Teknologi Pengolahan Mekanis dalam pembuatan perhiasan

Pelajari bagaimana perhiasan dibuat dari logam hingga menjadi karya akhir! Kita akan membahas tentang pengecoran, membentuk lembaran emas, membuat pipa dan kabel, dan proses keren yang disebut stamping. Semuanya tentang membuat perhiasan dengan lebih cepat dan lebih baik. Cocok untuk siapa saja yang berkecimpung dalam bisnis perhiasan atau yang menginginkan perhiasan khusus.

Baca Selengkapnya "

10% Mati !!

Pada semua setiap pesanan pertama

Bergabunglah dengan buletin kami

Berlangganan untuk menerima pembaruan & penawaran terbaru!

Produsen perhiasan Sobling mendapatkan penawaran untuk perhiasan Anda
Panduan utama pengadaan - 10 kiat untuk menghemat jutaan dolar untuk pengadaan Anda dari pemasok baru
Unduh Gratis

Panduan Utama Sumber Bisnis

10 Tips Berharga yang Dapat Menghemat Jutaan Rupiah untuk Membeli Perhiasan dari Pemasok Baru
Produsen perhiasan Sobling memberikan kustomisasi gratis untuk desain perhiasan Anda

Pabrik perhiasan, kustomisasi perhiasan, pabrik Perhiasan Moissanite, Perhiasan tembaga kuningan, Perhiasan Semi Mulia, Perhiasan Permata Sintetis, Perhiasan Mutiara Air Tawar, Perhiasan CZ Perak Sterling, kustomisasi Permata Semi Mulia, Perhiasan Permata Sintetis